Power-law Functions
The general power-law function follows the polynomial form given above, and is a ubiquitous form throughout mathematics and science. Notably, however, not all polynomial functions are power laws because not all polynomials exhibit the property of scale invariance. Typically, power-law functions are polynomials in a single variable, and are explicitly used to model the scaling behavior of natural processes. For instance, allometric scaling laws for the relation of biological variables are some of the best known power-law functions in nature. In this context, the term is most typically replaced by a deviation term, which can represent uncertainty in the observed values (perhaps measurement or sampling errors) or provide a simple way for observations to deviate from the power-law function (perhaps for stochastic reasons):
Scientific interest in power law relations stems partly from the ease with which certain general classes of mechanisms generate them (see the Sornette reference below). The demonstration of a power-law relation in some data can point to specific kinds of mechanisms that might underlie the natural phenomenon in question, and can indicate a deep connection with other, seemingly unrelated systems (see the reference by Simon and the subsection on universality below). The ubiquity of power-law relations in physics is partly due to dimensional constraints, while in complex systems, power laws are often thought to be signatures of hierarchy or of specific stochastic processes. A few notable examples of power laws are the Gutenberg-Richter law for earthquake sizes, Pareto's law of income distribution, structural self-similarity of fractals, and scaling laws in biological systems. Research on the origins of power-law relations, and efforts to observe and validate them in the real world, is an active topic of research in many fields of science, including physics, computer science, linguistics, geophysics, neuroscience, sociology, economics and more.
However much of the recent interest in power laws comes from the study of probability distributions: it's now known that the distributions of a wide variety of quantities seem to follow the power-law form, at least in their upper tail (large events). The behavior of these large events connects these quantities to the study of theory of large deviations (also called extreme value theory), which considers the frequency of extremely rare events like stock market crashes and large natural disasters. It is primarily in the study of statistical distributions that the name "power law" is used; in other areas the power-law functional form is more often referred to simply as a polynomial form or polynomial function.
Read more about this topic: Power Law
Famous quotes containing the word functions:
“Nobody is so constituted as to be able to live everywhere and anywhere; and he who has great duties to perform, which lay claim to all his strength, has, in this respect, a very limited choice. The influence of climate upon the bodily functions ... extends so far, that a blunder in the choice of locality and climate is able not only to alienate a man from his actual duty, but also to withhold it from him altogether, so that he never even comes face to face with it.”
—Friedrich Nietzsche (18441900)