Powder Diffraction - Explanation

Explanation

Ideally, every possible crystalline orientation is represented very equally in a powdered sample. The resulting orientational averaging causes the three-dimensional reciprocal space that is studied in single crystal diffraction to be projected onto a single dimension. The three-dimensional space can be described with (reciprocal) axes x*, y*and z*or alternatively in spherical coordinates q, φ*, and χ*. In powder diffraction, intensity is homogeneous over φ*and χ*, and only q remains as an important measurable quantity. In practice, it is sometimes necessary to rotate the sample orientation to eliminate the effects of texturing and achieve true randomness.

When the scattered radiation is collected on a flat plate detector, the rotational averaging leads to smooth diffraction rings around the beam axis, rather than the discrete Laue spots observed in single crystal diffraction. The angle between the beam axis and the ring is called the scattering angle and in X-ray crystallography always denoted as 2θ (in scattering of visible light the convention is usually to call it θ). In accordance with Bragg's law, each ring corresponds to a particular reciprocal lattice vector G in the sample crystal. This leads to the definition of the scattering vector as:

Powder diffraction data are usually presented as a diffractogram in which the diffracted intensity I is shown as function either of the scattering angle 2θ or as a function of the scattering vector q. The latter variable has the advantage that the diffractogram no longer depends on the value of the wavelength λ. The advent of synchrotron sources has widened the choice of wavelength considerably. To facilitate comparability of data obtained with different wavelengths the use of q is therefore recommended and gaining acceptability.

An instrument dedicated to performing powder measurements is called a powder diffractometer.

Read more about this topic:  Powder Diffraction

Famous quotes containing the word explanation:

    What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesn’t mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.
    Laurence Steinberg (20th century)

    Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the “correct” explanation is not quite so important as conveying a willingness to discuss the subject. Become an “askable parent.”
    Ruth Formanek (20th century)

    There is a great deal of unmapped country within us which would have to be taken into account in an explanation of our gusts and storms.
    George Eliot [Mary Ann (or Marian)