Symmetry
A useful starting point and organizing principle in the study of harmonic functions is a consideration of the symmetries of the Laplace equation. Although it is not a symmetry in the usual sense of the term, we can start with the observation that the Laplace equation is linear. This means that the fundamental object of study in potential theory is a linear space of functions. This observation will prove especially important when we consider function space approaches to the subject in a later section.
As for symmetry in the usual sense of the term, we may start with the theorem that the symmetries of the -dimensional Laplace equation are exactly the conformal symmetries of the -dimensional Euclidean space. This fact has several implications. First of all, one can consider harmonic functions which transform under irreducible representations of the conformal group or of its subgroups (such as the group of rotations or translations). Proceeding in this fashion, one systematically obtains the solutions of the Laplace equation which arise from separation of variables such as spherical harmonic solutions and Fourier series. By taking linear superpositions of these solutions, one can produce large classes of harmonic functions which can be shown to be dense in the space of all harmonic functions under suitable topologies.
Second, one can use conformal symmetry to understand such classical tricks and techniques for generating harmonic functions as the Kelvin transform and the method of images.
Third, one can use conformal transforms to map harmonic functions in one domain to harmonic functions in another domain. The most common instance of such a construction is to relate harmonic functions on a disk to harmonic functions on a half-plane.
Fourth, one can use conformal symmetry to extend harmonic functions to harmonic functions on conformally flat Riemannian manifolds. Perhaps the simplest such extension is to consider a harmonic function defined on the whole of Rn (with the possible exception of a discrete set of singular points) as a harmonic function on the -dimensional sphere. More complicated situations can also happen. For instance, one can obtain a higher-dimensional analog of Riemann surface theory by expressing a multiply valued harmonic function as a single-valued function on a branched cover of Rn or one can regard harmonic functions which are invariant under a discrete subgroup of the conformal group as functions on a multiply connected manifold or orbifold.
Read more about this topic: Potential Theory
Famous quotes containing the word symmetry:
“What makes a regiment of soldiers a more noble object of view than the same mass of mob? Their arms, their dresses, their banners, and the art and artificial symmetry of their position and movements.”
—George Gordon Noel Byron (17881824)