Relativistic Jet
Relativistic jets are extremely powerful jets of plasma which emerge from presumed massive objects at the centers of some active galaxies, notably radio galaxies and quasars. Their lengths can reach several thousand or even hundreds of thousands of light years. The hypothesis is that the twisting of magnetic fields in the accretion disk collimates the outflow along the rotation axis of the central object, so that when conditions are suitable, a jet will emerge from each face of the accretion disk. If the jet is oriented along the line of sight to Earth, relativistic beaming will change its apparent brightness. The mechanics behind both the creation of the jets and the composition of the jets are still a matter of much debate in the scientific community; it is hypothesized that the jets are composed of an electrically neutral mixture of electrons, positrons, and protons in some proportion.
Similar jets, though on a much smaller scale, can develop around the accretion disks of neutron stars and stellar black holes. These systems are often called microquasars. A famous example is SS433, whose well-observed jet has a velocity of 0.23c, although other microquasars appear to have much higher (but less well measured) jet velocities. Even weaker and less-relativistic jets may be associated with many binary systems; the acceleration mechanism for these jets may be similar to the magnetic reconnection processes observed in the Earth's magnetosphere and the solar wind.
The general hypothesis among astrophysicists is that the formation of relativistic jets is the key to explaining the production of gamma-ray bursts. These jets have Lorentz factors of ~100 (that is, speeds of roughly 0.99995c), making them some of the swiftest celestial objects currently known.
Read more about this topic: Polar Jet
Famous quotes containing the word jet:
“But every jet of chaos which threatens to exterminate us is convertible by intellect into wholesome force. Fate is unpenetrated causes.”
—Ralph Waldo Emerson (18031882)