Polar Decomposition - Bounded Operators On Hilbert Space

Bounded Operators On Hilbert Space

The polar decomposition of any bounded linear operator A between complex Hilbert spaces is a canonical factorization as the product of a partial isometry and a non-negative operator.

The polar decomposition for matrices generalizes as follows: if A is a bounded linear operator then there is a unique factorization of A as a product A = UP where U is a partial isometry, P is a non-negative self-adjoint operator and the initial space of U is the closure of the range of P.

The operator U must be weakened to a partial isometry, rather than unitary, because of the following issues. If A is the one-sided shift on l2(N), then |A| = {A*A}½ = I. So if A = U |A|, U must be A, which is not unitary.

The existence of a polar decomposition is a consequence of Douglas' lemma:

Lemma If A, B are bounded operators on a Hilbert space H, and A*AB*B, then there exists a contraction C such that A = CB. Furthermore, C is unique if Ker(B*) ⊂ Ker(C).

The operator C can be defined by C(Bh) = Ah, extended by continuity to the closure of Ran(B), and by zero on the orthogonal complement to all of H. The lemma then follows since A*AB*B implies Ker(A) ⊂ Ker(B).

In particular. If A*A = B*B, then C is a partial isometry, which is unique if Ker(B*) ⊂ Ker(C). In general, for any bounded operator A,

where (A*A)½ is the unique positive square root of A*A given by the usual functional calculus. So by the lemma, we have

for some partial isometry U, which is unique if Ker(A*) ⊂ Ker(U). Take P to be (A*A)½ and one obtains the polar decomposition A = UP. Notice that an analogous argument can be used to show A = P'U', where P' is positive and U' a partial isometry.

When H is finite dimensional, U can be extended to a unitary operator; this is not true in general (see example above). Alternatively, the polar decomposition can be shown using the operator version of singular value decomposition.

By property of the continuous functional calculus, |A| is in the C*-algebra generated by A. A similar but weaker statement holds for the partial isometry: U is in the von Neumann algebra generated by A. If A is invertible, the polar part U will be in the C*-algebra as well.

Read more about this topic:  Polar Decomposition

Famous quotes containing the words bounded and/or space:

    Me, what’s that after all? An arbitrary limitation of being bounded by the people before and after and on either side. Where they leave off, I begin, and vice versa.
    Russell Hoban (b. 1925)

    Thus all our dignity lies in thought. Through it we must raise ourselves, and not through space or time, which we cannot fill. Let us endeavor, then, to think well: this is the mainspring of morality.
    Blaise Pascal (1623–1662)