Polar Equation of A Curve
The equation defining an algebraic curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of θ. The resulting curve then consists of points of the form (r(θ), θ) and can be regarded as the graph of the polar function r.
Different forms of symmetry can be deduced from the equation of a polar function r. If r(−θ) = r(θ) the curve will be symmetrical about the horizontal (0°/180°) ray, if r(π − θ) = r(θ) it will be symmetric about the vertical (90°/270°) ray, and if r(θ − α) = r(θ) it will be rotationally symmetric α counterclockwise about the pole.
Because of the circular nature of the polar coordinate system, many curves can be described by a rather simple polar equation, whereas their Cartesian form is much more intricate. Among the best known of these curves are the polar rose, Archimedean spiral, lemniscate, limaçon, and cardioid.
For the circle, line, and polar rose below, it is understood that there are no restrictions on the domain and range of the curve.
Read more about this topic: Polar Coordinate System
Famous quotes containing the words polar, equation and/or curve:
“In time your relatives will come to accept the idea that a career is as important to you as your family. Of course, in time the polar ice cap will melt.”
—Barbara Dale (b. 1940)
“A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.”
—Norman Mailer (b. 1923)
“The years-heired feature that can
In curve and voice and eye
Despise the human span
Of durancethat is I;
The eternal thing in man,
That heeds no call to die.”
—Thomas Hardy (18401928)