Polar Coordinate System - Complex Numbers

Complex Numbers

Every complex number can be represented as a point in the complex plane, and can therefore be expressed by specifying either the point's Cartesian coordinates (called rectangular or Cartesian form) or the point's polar coordinates (called polar form). The complex number z can be represented in rectangular form as

where i is the imaginary unit, or can alternatively be written in polar form (via the conversion formulae given above) as

and from there as

where e is Euler's number, which are equivalent as shown by Euler's formula. (Note that this formula, like all those involving exponentials of angles, assumes that the angle θ is expressed in radians.) To convert between the rectangular and polar forms of a complex number, the conversion formulae given above can be used.

For the operations of multiplication, division, and exponentiation of complex numbers, it is generally much simpler to work with complex numbers expressed in polar form rather than rectangular form. From the laws of exponentiation:

  • Multiplication:
  • Division:
  • Exponentiation (De Moivre's formula):

Read more about this topic:  Polar Coordinate System

Famous quotes containing the words complex and/or numbers:

    In ordinary speech the words perception and sensation tend to be used interchangeably, but the psychologist distinguishes. Sensations are the items of consciousness—a color, a weight, a texture—that we tend to think of as simple and single. Perceptions are complex affairs that embrace sensation together with other, associated or revived contents of the mind, including emotions.
    Jacques Barzun (b. 1907)

    Think of the earth as a living organism that is being attacked by billions of bacteria whose numbers double every forty years. Either the host dies, or the virus dies, or both die.
    Gore Vidal (b. 1925)