Complex Numbers
Every complex number can be represented as a point in the complex plane, and can therefore be expressed by specifying either the point's Cartesian coordinates (called rectangular or Cartesian form) or the point's polar coordinates (called polar form). The complex number z can be represented in rectangular form as
where i is the imaginary unit, or can alternatively be written in polar form (via the conversion formulae given above) as
and from there as
where e is Euler's number, which are equivalent as shown by Euler's formula. (Note that this formula, like all those involving exponentials of angles, assumes that the angle θ is expressed in radians.) To convert between the rectangular and polar forms of a complex number, the conversion formulae given above can be used.
For the operations of multiplication, division, and exponentiation of complex numbers, it is generally much simpler to work with complex numbers expressed in polar form rather than rectangular form. From the laws of exponentiation:
- Multiplication:
- Division:
- Exponentiation (De Moivre's formula):
Read more about this topic: Polar Coordinate System
Famous quotes containing the words complex and/or numbers:
“It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.”
—Jimmy Carter (James Earl Carter, Jr.)
“Publishers are notoriously slothful about numbers, unless theyre attached to dollar signsunlike journalists, quarterbacks, and felony criminal defendents who tend to be keenly aware of numbers at all times.”
—Hunter S. Thompson (b. 1939)