Polar Coordinate System - Complex Numbers

Complex Numbers

Every complex number can be represented as a point in the complex plane, and can therefore be expressed by specifying either the point's Cartesian coordinates (called rectangular or Cartesian form) or the point's polar coordinates (called polar form). The complex number z can be represented in rectangular form as

where i is the imaginary unit, or can alternatively be written in polar form (via the conversion formulae given above) as

and from there as

where e is Euler's number, which are equivalent as shown by Euler's formula. (Note that this formula, like all those involving exponentials of angles, assumes that the angle θ is expressed in radians.) To convert between the rectangular and polar forms of a complex number, the conversion formulae given above can be used.

For the operations of multiplication, division, and exponentiation of complex numbers, it is generally much simpler to work with complex numbers expressed in polar form rather than rectangular form. From the laws of exponentiation:

  • Multiplication:
  • Division:
  • Exponentiation (De Moivre's formula):

Read more about this topic:  Polar Coordinate System

Famous quotes containing the words complex and/or numbers:

    When distant and unfamiliar and complex things are communicated to great masses of people, the truth suffers a considerable and often a radical distortion. The complex is made over into the simple, the hypothetical into the dogmatic, and the relative into an absolute.
    Walter Lippmann (1889–1974)

    And when all bodies meet
    In Lethe to be drowned,
    Then only numbers sweet
    With endless life are crowned.
    Robert Herrick (1591–1674)