Definition
A discrete stochastic variable X is said to have a Poisson distribution with parameter λ>0, if for k = 0, 1, 2, ... the probability mass function of X is given by:
where
- e is the base of the natural logarithm (e = 2.71828...)
- k! is the factorial of k.
The positive real number λ is equal to the expected value of X, but also to the variance:
The Poisson distribution can be applied to systems with a large number of possible events, each of which is rare. The Poisson distribution is sometimes called a Poissonian.
Read more about this topic: Poisson Distribution
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)