Hamilton's Equations of Motion
The Hamilton's equations of motion have an equivalent expression in terms of the Poisson bracket. This may be most directly demonstrated in an explicit coordinate frame. Suppose that f(p,q,t) is a function on the manifold. Then one has
Further, by taking p = p(t) and q = q(t) to be solutions to Hamilton's equations
- and
one may write
Thus, the time evolution of a function f on a symplectic manifold can be given as a one-parameter family of symplectomorphisms (i.e. canonical transformations, area-preserving diffeomorphisms), with the time t being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian. That is, Poisson brackets are preserved in it, so that any time t in the solution to Hamilton's equations, q(t)=exp(-t{H,•}) q(0), p(t)=exp(-t{H,•}) p(0), can serve as the bracket coordinates. Poisson brackets are canonical invariants.
Dropping the coordinates, one has
The operator in the convective part of the derivative, is sometimes referred to as the Liouvillian (see Liouville's theorem (Hamiltonian)).
Read more about this topic: Poisson Bracket
Famous quotes containing the words hamilton and/or motion:
“None but a poet can write a tragedy. For tragedy is nothing less than pain transmuted into exaltation by the alchemy of poetry.”
—Edith Hamilton (18671963)
“We must not suppose that, because a man is a rational animal, he will, therefore, always act rationally; or, because he has such or such a predominant passion, that he will act invariably and consequentially in pursuit of it. No, we are complicated machines; and though we have one main spring that gives motion to the whole, we have an infinity of little wheels, which, in their turns, retard, precipitate, and sometime stop that motion.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)