Relation To Umbral Calculus
The falling factorial occurs in a formula which represents polynomials using the forward difference operator Δ and which is formally similar to Taylor's theorem of calculus. In this formula and in many other places, the falling factorial (x)k in the calculus of finite differences plays the role of xk in differential calculus. Note for instance the similarity of
to
A similar result holds for the rising factorial.
The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Rising and falling factorials are Sheffer sequences of binomial type:
where the coefficients are the same as the ones in the expansion of a power of a binomial (Chu-Vandermonde identity).
Similarly, the generating function of Pochhammer polynomials then amounts to the umbral exponential,
as Δ(1+t )x = t (1+t )x.
Read more about this topic: Pochhammer Symbol
Famous quotes containing the words relation to, relation and/or calculus:
“Any relation to the land, the habit of tilling it, or mining it, or even hunting on it, generates the feeling of patriotism. He who keeps shop on it, or he who merely uses it as a support to his desk and ledger, or to his manufactory, values it less.”
—Ralph Waldo Emerson (18031882)
“We shall never resolve the enigma of the relation between the negative foundations of greatness and that greatness itself.”
—Jean Baudrillard (b. 1929)
“I try to make a rough music, a dance of the mind, a calculus of the emotions, a driving beat of praise out of the pain and mystery that surround me and become me. My poems are meant to make your mind get up and shout.”
—Judith Johnson Sherwin (b. 1936)