Relation To Umbral Calculus
The falling factorial occurs in a formula which represents polynomials using the forward difference operator Δ and which is formally similar to Taylor's theorem of calculus. In this formula and in many other places, the falling factorial (x)k in the calculus of finite differences plays the role of xk in differential calculus. Note for instance the similarity of
to
A similar result holds for the rising factorial.
The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Rising and falling factorials are Sheffer sequences of binomial type:
where the coefficients are the same as the ones in the expansion of a power of a binomial (Chu-Vandermonde identity).
Similarly, the generating function of Pochhammer polynomials then amounts to the umbral exponential,
as Δ(1+t )x = t (1+t )x.
Read more about this topic: Pochhammer Symbol
Famous quotes containing the words relation to, relation and/or calculus:
“It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.”
—René Descartes (15961650)
“Every word was once a poem. Every new relation is a new word.”
—Ralph Waldo Emerson (18031882)
“I try to make a rough music, a dance of the mind, a calculus of the emotions, a driving beat of praise out of the pain and mystery that surround me and become me. My poems are meant to make your mind get up and shout.”
—Judith Johnson Sherwin (b. 1936)