Constituent Layers
As Navier–Stokes equations suggest, the planetary boundary layer turbulence is produced in the layer with the largest velocity gradients that is at the very surface proximity. This layer – conventionally called a surface layer – constitutes about 10% of the total PBL depth. Above the surface layer the PBL turbulence gradually dissipates, losing its kinetic energy to friction as well as converting the kinetic to potential energy in a density stratified flow. The balance between the rate of the turbulent kinetic energy production and its dissipation determines the planetary boundary layer depth. The PBL depth varies broadly. At a given wind speed, e.g. 8 m/s, and so at a given rate of the turbulence production, a PBL in wintertime Arctic could be as shallow as 50 m, a nocturnal PBL in mid-latitudes could be typically 300 m in thickness, and a tropical PBL in the trade-wind zone could grow to its full theoretical depth of 2000 m.
In addition to the surface layer, the planetary boundary layer also comprises the PBL core (between 0.1 and 0.7 of the PBL depth) and the PBL top or entrainment layer or capping inversion layer (between 0.7 and 1 of the PBL depth). Four main external factors determine the PBL depth and its mean vertical structure:
- the free atmosphere wind speed;
- the surface heat (more exactly buoyancy) balance;
- the free atmosphere density stratification;
- the free atmosphere vertical wind shear or baroclinicity.
Read more about this topic: Planetary Boundary Layer
Famous quotes containing the word layers:
“The force of a death should be enormous but how can you know what kind of man youve killed or who was the braver and stronger if you have to peer through layers of glass that deliver the image but obscure the meaning of the act? War has a conscience or its ordinary murder.”
—Don Delillo (b. 1926)