Physical Significance
One Planck time is the time it would take a photon traveling at the speed of light to cross a distance equal to one Planck length. Theoretically, this is the smallest time measurement that will ever be possible, roughly 10−43 seconds. Within the framework of the laws of physics as we understand them today, for times less than one Planck time apart, we can neither measure nor detect any change. As of May 2010, the smallest time interval uncertainty in direct measurements is on the order of 12 attoseconds (1.2 × 10−17 seconds), about 3.7 × 1026 Planck times.
The Planck time comes from a field of mathematical physics known as dimensional analysis, which studies units of measurement and physical constants. The Planck time is the unique combination of the gravitational constant G, the relativity constant c, and the quantum constant h, to produce a constant with units of time. For processes that occur in a time t less than one Planck time, the dimensionless quantity tP / t is greater than one. Dimensional analysis suggests that the effects of both quantum mechanics and gravity will be important under these circumstances, requiring a theory of quantum gravity. All scientific experiments and human experiences happen over billions of billions of billions of Planck times, making any events happening at the Planck scale hard to detect.
Analysis of Hubble Space Telescopes deep field images in 2003 led to a debate about the physical implications of the Planck time as a physical minimum time interval. According to Lieu and Hillman, speculative theories of quantum gravity "foam" where there are space–time fluctuations on the Planck scale predict that images of extremely distant objects should be blurry. However, blurring was not seen in the Hubble images, which was claimed to be problematic for such theories. Other authors have disputed this, in particular Ng et al., who stated that the blurring effect was overestimated by Lieu and Hillman by factors of between 1015 and 1030, and thus the observations are very much less effective in constraining theory: "the cumulative effects of spacetime fluctuations on the phase coherence of light are too small to be observable".
Read more about this topic: Planck Time
Famous quotes containing the words physical and/or significance:
“A separation situation is different for adults than it is for children. When we were very young children, a physical separation was interpreted as a violation of our inalienable rights....As we grew older, the withdrawal of love, whether that meant being misunderstood, mislabeled or slighted, became the separation situation we responded to.”
—Roger Gould (20th century)
“To grasp the full significance of life is the actors duty, to interpret it is his problem, and to express it his dedication.”
—Marlon Brando (b. 1924)