Kuratowski's and Wagner's Theorems
The Polish mathematician Kazimierz Kuratowski provided a characterization of planar graphs in terms of forbidden graphs, now known as Kuratowski's theorem:
- A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of K5 (the complete graph on five vertices) or K3,3 (complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).
A subdivision of a graph results from inserting vertices into edges (for example, changing an edge •——• to •—•—•) zero or more times. Equivalent formulations of this theorem, also known as "Theorem P" include
- A finite graph is planar if and only if it does not contain a subgraph that is homeomorphic to K5 or K3,3.
In the Soviet Union, Kuratowski's theorem was known as the Pontryagin–Kuratowski theorem, as its proof was allegedly first given in Pontryagin's unpublished notes. By a long-standing academic tradition, such references are not taken into account in determining priority, so the Russian name of the theorem is not acknowledged internationally.
Instead of considering subdivisions, Wagner's theorem deals with minors:
- A finite graph is planar if and only if it does not have K5 or K3,3 as a minor.
Klaus Wagner asked more generally whether any minor-closed class of graphs is determined by a finite set of "forbidden minors". This is now the Robertson–Seymour theorem, proved in a long series of papers. In the language of this theorem, K5 and K3,3 are the forbidden minors for the class of finite planar graphs.
Read more about this topic: Planar Graph
Famous quotes containing the word wagner:
“This morning I threw up at a board meeting. I was sure the cat was out of the bag, but no one seemed to think anything about it; apparently its quite common for people to throw up at board meetings.”
—Jane Wagner (b. 1935)