Infinite Sets
The pigeonhole principle can be extended to infinite sets by phrasing it in terms of cardinal numbers: if the cardinality of set A is greater than the cardinality of set B, then there is no injection from A to B. However in this form the principle is tautological, since the meaning of the statement that the cardinality of set A is greater than the cardinality of set B is exactly that there is no injective map from A to B. What makes the situation of finite sets interesting is that adding at least one element to a set is sufficient to ensure that the cardinality increases.
Read more about this topic: Pigeonhole Principle
Famous quotes containing the words infinite and/or sets:
“They will visit you at your convenience, whether you are lonesome or not, on rainy days or fair. They propose themselves as either transient acquaintances or permanent friends. They will stay as long as you like, departing or returning as you wish. Their friendship entails no obligation. Best of all, and not always true of our merely human friends, they have Cleopatras infinite variety.”
—Clifton Fadiman (b. 1904)
“This is certainly not the place for a discourse about what festivals are for. Discussions on this theme were plentiful during that phase of preparation and on the whole were fruitless. My experience is that discussion is fruitless. What sets forth and demonstrates is the sight of events in action, is living through these events and understanding them.”
—Doris Lessing (b. 1919)