Physical Law - Laws Being Consequences of Mathematical Symmetries

Laws Being Consequences of Mathematical Symmetries

Other laws reflect mathematical symmetries found in Nature (say, Pauli exclusion principle reflects identity of electrons, conservation laws reflect homogeneity of space, time, Lorentz transformations reflect rotational symmetry of space–time). Laws are constantly being checked experimentally to higher and higher degrees of precision. This is one of the main goals of science. The fact that laws have never been seen to be violated does not preclude testing them at increased accuracy or new kinds of conditions to confirm whether they continue to hold, or whether they break, and what can be discovered in the process. It is always possible for laws to be invalidated or proven to have limitations, by repeatable experimental evidence; should any be seen. However, fundamental changes to the laws are extremely unlikely, since this would imply a change to experimental facts they were derived from in the first place.

Well-established laws have indeed been invalidated in some special cases, but the new formulations created to explain the discrepancies can be said to generalize upon, rather than overthrow, the originals. That is, the invalidated laws have been found to be only close approximations (see below), to which other terms or factors must be added to cover previously unaccounted-for conditions, e.g., very large or very small scales of time or space, enormous speeds or masses, etc. Thus, rather than unchanging knowledge, physical laws are better viewed as a series of improving and more precise generalizations.

Read more about this topic:  Physical Law

Famous quotes containing the words laws, consequences and/or mathematical:

    These are not the artificial forests of an English king,—a royal preserve merely. Here prevail no forest laws but those of nature. The aborigines have never been dispossessed, nor nature disforested.
    Henry David Thoreau (1817–1862)

    There are more consequences to a shipwreck than the underwriters notice.
    Henry David Thoreau (1817–1862)

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)