Philo Farnsworth - Career

Career

A few months after arriving in California, Farnsworth was prepared to show his models and drawings to a patent attorney who was nationally recognized as an authority on electrophysics. Everson and Gorrell agreed that Farnsworth should apply for patents for his designs, a decision which proved crucial in later disputes with RCA. Most television systems in use at the time used image scanning devices ("rasterizers") employing rotating "Nipkow disks" comprising lenses arranged in spiral patterns such that they swept across an image in a succession of short arcs while focusing the light they captured on photosensitive elements, thus producing a varying electrical signal corresponding to the variations in light intensity. Farnsworth recognized the limitations of the mechanical systems, and that an all-electronic scanning system could produce a superior image for transmission to a receiving device.

On September 7, 1927, Farnsworth's image dissector camera tube transmitted its first image, a simple straight line, at his laboratory at 202 Green Street in San Francisco. The source of the image was a glass slide, backlit by an arc lamp. An extremely bright source was required because of the low light sensitivity of the design. By 1928, Farnsworth had developed the system sufficiently to hold a demonstration for the press. His backers had demanded to know when they would see dollars from the invention, so the first image shown was, appropriately, a dollar sign. In 1929, the design was further improved by elimination of a motor-generator, so the television system now had no mechanical parts. That year, Farnsworth transmitted the first live human images using his television system, including a three and a half-inch image of his wife Elma ("Pem"), with her eyes closed because of the blinding light required.

Many inventors had built electromechanical television systems prior to Farnsworth's seminal contribution, but Farnsworth designed and built the world's first working all-electronic television system, employing electronic scanning in both the pickup and display devices. He first demonstrated his system to the press on September 3, 1928, and to the public at the Franklin Institute in Philadelphia on August 25, 1934.

In 1930, Vladimir Zworykin, who had been developing his own all-electronic television system at Westinghouse in Pittsburgh since 1923, but which he had never been able to make work or satisfactorily demonstrate to his superiors, was recruited by RCA to lead its television development department. Before leaving his old employer, Zworykin visited Farnsworth's laboratory and was sufficiently impressed with the performance of the Image Dissector that he reportedly had his team at Westinghouse make several copies of the device for experimentation. But Zworykin later abandoned research on the Image Dissector, which at the time required extremely bright illumination of its subjects to be effective, and turned his attention to what would become the Iconoscope.

In 1931, David Sarnoff of RCA offered to buy Farnsworth's patents for $100,000 (USD), with the stipulation that he become an employee of RCA, but Farnsworth refused. In June of that year, Farnsworth joined the Philco company and moved to Philadelphia along with his wife and two children. RCA would later file an interference suit against Farnsworth, claiming Zworykin's 1923 patent had priority over Farnsworth's design, despite the fact it could present no evidence that Zworykin had actually produced a functioning transmitter tube before 1931. Farnsworth had lost two interference claims to Zworykin in 1928, but this time he prevailed and the U.S. Patent Office rendered a decision in 1934 awarding priority of the invention of the image dissector to Farnsworth. RCA lost a subsequent appeal, but litigation over a variety of issues continued for several years with Sarnoff finally agreeing to pay Farnsworth royalties. Zworykin received a patent in 1928 for a color transmission version of his 1923 patent application, he also divided his original application in 1931, receiving a patent in 1935, while a second one was eventually issued in 1938 by the Court of Appeals on a non-Farnsworth related interference case, and over the objection of the Patent Office.

In 1932, while in England to raise money for his legal battles with RCA, Farnsworth met with John Logie Baird, a Scottish inventor who had given the world's first public demonstration of a working television system in London in 1926, using mechanical imaging systems, and who was seeking to develop electronic television receivers. Baird demonstrated his mechanical system for Farnsworth. Baird's company directors pursued a merger with Farnsworth, paying $50,000 to supply electronic television equipment and provide access to Farnsworth patents. Baird and Farnsworth competed with EMI for the U.K. standard television system, but EMI merged with the Marconi Company in 1934, gaining access to the RCA Iconoscope patents. After trials of both systems, the BBC committee chose the Marconi-EMI system, which was by then virtually identical to RCA's system. The image dissector scanned well, but had poor light sensitivity compared to the Marconi-EMI Iconoscopes, dubbed "Emitrons".

After sailing to Europe in 1934, Farnsworth secured an agreement with Goerz-Bosch-Fernseh in Germany. Some image dissector cameras were used to broadcastK the 1936 Olympic Games in Berlin.

In March 1932, Philco denied Farnsworth time to travel to Utah to bury his young son Kenny, placing a strain on Farnsworth's marriage, and possibly marking the beginning of his struggle with depression. In May 1933, the Philco Corporation severed their relationship with Farnsworth because, in George Everson's words, "it become apparent that Philo's aim at establishing a broad patent structure through research not identical with the production program of Philco." Many sources paint this breakup as Philco's idea, but Everson made it sound as though the decision was mutual and amicable.

Farnsworth returned to his lab, and by 1936 his company was regularly transmitting entertainment programs on an experimental basis. That same year, while working with University of Pennsylvania biologists, Farnsworth developed a process to sterilize milk using radio waves. He also invented a fog-penetrating beam for ships and airplanes.

In 1936 he attracted the attention of Collier's Weekly, which described his work in glowing terms. "One of those amazing facts of modern life that just don't seem possible – namely, electrically scanned television that seems destined to reach your home next year, was largely given to the world by a nineteen year old boy from Utah ... Today, barely thirty years old he is setting the specialized world of science on its ears."

In 1938, Farnsworth established the Farnsworth Television and Radio Corporation in Fort Wayne, Indiana, with E. A. Nicholas as president and himself as director of research. In September 1939, after a more than decade long legal battle, RCA finally conceded to a multi-year licensing agreement concerning Farnsworth's 1927 patent for Television totaling $1 million. RCA was then free, after showcasing electronic television at The New York World's Fair on April 20, 1939, to sell electronic television cameras to the public.

Farnsworth Television and Radio Corporation was purchased by International Telephone and Telegraph (ITT) in 1951. During his time at ITT, Farnsworth worked in a basement lab known as “the cave” on Pontiac Street in Fort Wayne. From there he introduced a number of breakthrough concepts, including a defense early warning signal, submarine detection devices, radar calibration equipment and an infrared telescope. “Philo was a very deep person – tough to engage in conversation because he was always thinking about what he could do next,” said Art Resler, an ITT photographer who documented Farnsworth’s work in pictures. One of Farnsworth's most significant contributions at ITT was the PPI Projector, an enhancement on the iconic "circular sweep" radar display, which allowed safe control of air traffic from the ground. This system developed in the 1950s was the forerunner of today’s air traffic control systems.

In July 1957, Farnsworth appeared on the CBS quiz show I've Got A Secret, hosted by Garry Moore. Moore identified Farnsworth as "Dr. X" and his secret ("I invented electronic television") flashed on television screens. The panel failed to guess his secret. Moore then spent a few minutes discussing with Farnsworth his research on such projects as high definition television, flat screen receivers, and fusion power.

In addition to his electronics research, ITT management agreed to nominally fund Farnsworth's nuclear fusion research. He and staff members invented and refined a series of fusion reaction tubes called "fusors". For scientific reasons unknown to Farnsworth and his staff, the necessary reactions lasted no longer than thirty seconds. In December 1965, ITT came under pressure from its board of directors to terminate the expensive project and sell the Farnsworth subsidiary. It was only due to the urging of President Harold Geneen that the 1966 budget was accepted, extending ITT's fusion research for an additional year. The stress associated with this managerial ultimatum, however, caused Farnsworth to suffer a relapse. A year later he was terminated and eventually allowed medical retirement.

In the spring of 1967, Farnsworth and his family moved back to Utah to continue his fusion research at Brigham Young University, which presented him with an honorary doctorate. The university also offered him office space and an underground concrete bunker for the project. Realizing the fusion lab was to be dismantled at ITT, Farnsworth invited staff members to accompany him to Salt Lake City, as team members in Philo T. Farnsworth Associates (PTFA). By late 1968, the associates began holding regular business meetings and PTFA was underway. Although a contract with the National Aeronautics and Space Administration (NASA) was promptly secured, and more possibilities were within reach, financing stalled for the $24,000 in monthly expenses required to cover salaries and equipment rental.

By Christmas 1970, PTFA had failed to secure the necessary financing, and the Farnsworths had sold all their own ITT stock and cashed in Philo's life insurance policy to maintain organizational stability. The underwriter had failed to provide the financial backing that was to have supported the organization during its critical first year. The banks called in all outstanding loans, repossession notices were placed on anything not previously sold, and the Internal Revenue Service put a lock on the laboratory door until delinquent taxes were paid. In January 1970, PTFA disbanded. Farnsworth had begun abusing alcohol in his later years, and as a consequence he became seriously ill with pneumonia, and died on 11 March 1971.

Farnsworth's wife Elma Gardner "Pem" Farnsworth fought for decades after his death to assure his place in history. Farnsworth always gave her equal credit for creating television, saying, "my wife and I started this TV." She died on April 27, 2006, at age 98. The inventor and wife were survived by two sons, Russell (then living in New York), and Kent (then living in Fort Wayne, Indiana).

In 1999, TIME magazine included Farnsworth in "The TIME 100: The Most Important People of the Century"'.

Read more about this topic:  Philo Farnsworth

Famous quotes containing the word career:

    My ambition in life: to become successful enough to resume my career as a neurasthenic.
    Mason Cooley (b. 1927)

    He was at a starting point which makes many a man’s career a fine subject for betting, if there were any gentlemen given to that amusement who could appreciate the complicated probabilities of an arduous purpose, with all the possible thwartings and furtherings of circumstance, all the niceties of inward balance, by which a man swings and makes his point or else is carried headlong.
    George Eliot [Mary Ann (or Marian)

    Whether lawyer, politician or executive, the American who knows what’s good for his career seeks an institutional rather than an individual identity. He becomes the man from NBC or IBM. The institutional imprint furnishes him with pension, meaning, proofs of existence. A man without a company name is a man without a country.
    Lewis H. Lapham (b. 1935)