Phase Integral
In classical statistical mechanics (continuous energies) the concept of phase space provides a classical analog to the partition function (sum over states) known as the phase integral. Instead of summing the Boltzmann factor over discretely spaced energy states (defined by appropriate integer quantum numbers for each degree of freedom) one may integrate over continuous phase space. Such integration essentially consists of two parts: integration of the momentum component of all degrees of freedom (momentum space) and integration of the position component of all degrees of freedom (configuration space). Once the phase integral is known, it may be related to the classical partition function by multiplication of a normalization constant representing the number of quantum energy states per unit phase space. As shown in detail in, this normalization constant is simply the inverse of Planck's constant raised to a power equal to the number of degrees of freedom for the system.
Read more about this topic: Phase Space
Famous quotes containing the words phase and/or integral:
“I had let preadolescence creep up on me without paying much attentionand I seriously underestimated this insidious phase of child development. You hear about it, but youre not a true believer until it jumps out at you in the shape of your own, until recently quite companionable child.”
—Susan Ferraro (20th century)
“... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.”
—Angelina Grimké (18051879)