Phase Space - Phase Integral

Phase Integral

In classical statistical mechanics (continuous energies) the concept of phase space provides a classical analog to the partition function (sum over states) known as the phase integral. Instead of summing the Boltzmann factor over discretely spaced energy states (defined by appropriate integer quantum numbers for each degree of freedom) one may integrate over continuous phase space. Such integration essentially consists of two parts: integration of the momentum component of all degrees of freedom (momentum space) and integration of the position component of all degrees of freedom (configuration space). Once the phase integral is known, it may be related to the classical partition function by multiplication of a normalization constant representing the number of quantum energy states per unit phase space. As shown in detail in, this normalization constant is simply the inverse of Planck's constant raised to a power equal to the number of degrees of freedom for the system.

Read more about this topic:  Phase Space

Famous quotes containing the words phase and/or integral:

    This is certainly not the place for a discourse about what festivals are for. Discussions on this theme were plentiful during that phase of preparation and on the whole were fruitless. My experience is that discussion is fruitless. What sets forth and demonstrates is the sight of events in action, is living through these events and understanding them.
    Doris Lessing (b. 1919)

    Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made me—a book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.
    Michel de Montaigne (1533–1592)