Phase Correlation - Method

Method

Given two input images and :

Apply a window function (e.g., a Hamming window) on both images to reduce edge effects. Then, calculate the discrete 2D Fourier transform of both images.

Calculate the cross-power spectrum by taking the complex conjugate of the second result, multiplying the Fourier transforms together elementwise, and normalizing this product elementwise.

Obtain the normalized cross-correlation by applying the inverse Fourier transform.

Determine the location of the peak in .

Commonly, interpolation methods are used to estimate the peak location to non-integer values, despite the fact that the data are discrete. Because the Fourier representation of the data has already been computed, it is especially convenient to use the Fourier shift theorem with real-valued shifts for this purpose. It is also possible to infer the peak location from phase characteristics in Fourier space without the inverse transformation, as noted by Stone

Read more about this topic:  Phase Correlation

Famous quotes containing the word method:

    You that do search for every purling spring
    Which from the ribs of old Parnassus flows,
    And every flower, not sweet perhaps, which grows
    Near thereabouts into your poesy wring;
    You that do dictionary’s method bring
    Into your rhymes, running in rattling rows;
    Sir Philip Sidney (1554–1586)

    The most passionate, consistent, extreme and implacable enemy of the Enlightenment and ... all forms of rationalism ... was Johann Georg Hamann. His influence, direct and indirect, upon the romantic revolt against universalism and scientific method ... was considerable and perhaps crucial.
    Isaiah Berlin (b. 1909)

    If all feeling for grace and beauty were not extinguished in the mass of mankind at the actual moment, such a method of locomotion as cycling could never have found acceptance; no man or woman with the slightest aesthetic sense could assume the ludicrous position necessary for it.
    Ouida [Marie Louise De La Ramée] (1839–1908)