Proof (Higher Dimensions)
The general formula for higher dimensions can be quickly arrived at using vector notation. Let the hyperplane have equation, where the is a normal vector and is a position vector to a point in the hyperplane. We desire the orthogonal distance to the point . The hyperplane may also be represented by the scalar equation, for constants . Likewise, a corresponding may be represented as . The magnitude of the vector is like our distance above, so we desire the scalar projection in the direction of . Noting that (as satisfies the equation of the hyperplane) we have
- .
Notice how the general expression is consistent with dimensions.
Read more about this topic: Perpendicular Distance
Famous quotes containing the word proof:
“Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other twoa proof of the decline of that country.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)