Transpositions, Simple Transpositions, Inversions and Sorting
A 2-cycle is known as a transposition. A simple transposition in Sn is a 2-cycle of the form (i i + 1).
For a permutation p in Sn, a pair (i, j)∈In is a permutation inversion, if when i<j, we have p(i) > p(j).
Every permutation can be written as a product of simple transpositions; furthermore, the number of simple transpositions one can write a permutation p in Sn can be the number of inversions of p and if the number of inversions in p is odd or even the number of transpositions in p will also be odd or even corresponding to the oddness of p.
Read more about this topic: Permutation Group
Famous quotes containing the word simple:
“How simple the writing of literature would be if it were only necessary to write in another way what has been well written. It is because we have had such great writers in the past that a writer is driven far out past where he can go, out to where no one can help him.”
—Ernest Hemingway (18991961)