Examples
Permutations are often written in cyclic form so that given the set M = {1,2,3,4}, a permutation g of M with g(1) = 2, g(2) = 4, g(4) = 1 and g(3) = 3 will be written as (1,2,4)(3), or more commonly, (1,2,4) since 3 is left unchanged; if the objects are denoted by a single letter or digit, commas are also dispensed with, and we have a notation such as (1 2 4).
Consider the following set G of permutations of the set M = {1,2,3,4}:
- e = (1)(2)(3)(4)= (1)
- This is the identity, the trivial permutation which fixes each element.
- a = (1 2)(3)(4) = (1 2)
- This permutation interchanges 1 and 2, and fixes 3 and 4.
- b = (1)(2)(3 4) = (3 4)
- Like the previous one, but exchanging 3 and 4, and fixing the others.
- ab = (1 2)(3 4)
- This permutation, which is the composition of the previous two, exchanges simultaneously 1 with 2, and 3 with 4.
G forms a group, since aa = bb = e, ba = ab, and baba = e. So (G,M) forms a permutation group.
The Rubik's Cube puzzle is another example of a permutation group. The underlying set being permuted is the coloured subcubes of the whole cube. Each of the rotations of the faces of the cube is a permutation of the positions and orientations of the subcubes. Taken together, the rotations form a generating set, which in turn generates a group by composition of these rotations. The axioms of a group are easily seen to be satisfied; to invert any sequence of rotations, simply perform their opposites, in reverse order.
The group of permutations on the Rubik's Cube does not form a complete symmetric group of the 20 corner and face cubelets; there are some final cube positions which cannot be achieved through the legal manipulations of the cube.
More generally, every group G is isomorphic to a subgroup of a permutation group by virtue of its regular action on G as a set; this is the content of Cayley's theorem.
Read more about this topic: Permutation Group
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)