Permutation Group - Closure Properties

Closure Properties

As a subgroup of a symmetric group, all that is necessary for a permutation group to satisfy the group axioms is that it contain the identity permutation, the inverse permutation of each permutation it contains, and be closed under composition of its permutations. A general property of finite groups implies that a finite subset of a symmetric group is again a group if and only if it is closed under the group operation.

Read more about this topic:  Permutation Group

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)