Spatial Position in Membrane
Orientations and penetration depths of many amphitropic proteins and peptides in membranes are studied using site-directed spin labeling, chemical labeling, measurement of membrane binding affinities of protein mutants, fluorescence spectroscopy, solution or solid-state NMR spectroscopy, ATR FTIR spectroscopy, X-ray or neutron diffraction, and computational methods.
Two distinct membrane-association modes of proteins have been identified. Typical water-soluble proteins have no exposed nonpolar residues or any other hydrophobic anchors. Therefore, they remain completely in aqueous solution and do not penetrate into the lipid bilayer, which would be energetically costly. Such proteins interact with bilayers only electrostatically, for example, ribonuclease and poly-lysine interact with membranes in this mode. However, typical amphitropic proteins have various hydrophobic anchors that penetrate the interfacial region and reach the hydrocarbon interior of the membrane. Such proteins "deform" the lipid bilayer, decreasing the temperature of lipid fluid-gel transition. The binding is usually a strongly exothermic reaction. Association of amphiphilic α-helices with membranes occurs similarly. Intrinsically unstructured or unfolded peptides with nonpolar residues or lipid anchors can also penetrate the interfacial region of the membrane and reach the hydrocarbon core, especially when such peptides are cationic and interact with negatively charged membranes.
Read more about this topic: Peripheral Membrane Protein
Famous quotes containing the word position:
“My position is a naturalistic one; I see philosophy not as an a priori propaedeutic or groundwork for science, but as continuous with science. I see philosophy and science as in the same boata boat which, to revert to Neuraths figure as I so often do, we can rebuild only at sea while staying afloat in it. There is no external vantage point, no first philosophy.”
—Willard Van Orman Quine (b. 1908)