In mathematics, a periodic function is a function that repeats its values in regular intervals or periods. The most important examples are the trigonometric functions, which repeat over intervals of length 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. Any function which is not periodic is called aperiodic.
Read more about Periodic Function: Definition, Examples, Properties, Double-periodic Functions, Complex Example
Famous quotes containing the words periodic and/or function:
“It can be demonstrated that the childs contact with the real world is strengthened by his periodic excursions into fantasy. It becomes easier to tolerate the frustrations of the real world and to accede to the demands of reality if one can restore himself at intervals in a world where the deepest wishes can achieve imaginary gratification.”
—Selma H. Fraiberg (20th century)
“We are thus able to distinguish thinking as the function which is to a large extent linguistic.”
—Benjamin Lee Whorf (18971934)