The Negative Pell Equation
The negative Pell equation is given by
- (eq.1)
It has also been extensively studied; it can be solved by the same method of using continued fractions and will have solutions when the period of the continued fraction has odd length. However we do not know which roots have odd period lengths so we do not know when the negative Pell equation is solvable. But we can eliminate certain n since a necessary but not sufficient condition for solvability is that n is not divisible by a prime of form 4m+3. Thus, for example, x2-3py2 = -1 is never solvable, but x2-5py2 = -1 may be, such as when p = 1 or 13, though not when p = 41.
Cremona & Odoni (1989) demonstrate that the proportion of square-free n divisible by k primes of the form 4m+1 for which the negative Pell equation is soluble is at least 40%. If it does have a solution, then it can be shown that its fundamental solution leads to the fundamental one for the positive case by squaring both sides of eq. 1,
to get,
Or, since ny2 = x2+1 from eq.1, then,
showing that fundamental solutions to the positive case are bigger than those for the negative case.
Read more about this topic: Pell's Equation
Famous quotes containing the words negative and/or equation:
“The working woman may be quick to see any problems with children as her fault because she isnt as available to them. However, the fact that she is employed is rarely central to the conflict. And overall, studies show, being employed doesnt have negative effects on children; carefully done research consistently makes this clear.”
—Grace Baruch (20th century)
“A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.”
—Norman Mailer (b. 1923)