Time Needed For Password Searches
The time to crack a password is related to bit strength (see password strength); which is a measure of the password's information entropy. Most methods of password cracking require the computer to produce many candidate passwords, each of which is checked. One example is brute-force cracking, in which a computer tries every possible key or password until it succeeds. More common methods of password cracking, such as dictionary attacks, pattern checking, word list substitution, etc., attempt to reduce the number of trials required and will usually be attempted before brute force. Higher password bit strength increases exponentially the number of candidate passwords that must be checked, on average, to recover the password and reduces the likelihood that the password will be found in any cracking dictionary.
The ability to crack passwords using computer programs is also a function of the number of possible passwords per second which can be checked. If a hash of the target password is available to the attacker, this number can be quite large. If not, the rate depends on whether the authentication software limits how often a password can be tried, either by time delays, CAPTCHAs, or forced lockouts after some number of failed attempts. Another situation where quick guessing is possible is when the password is used to form a cryptographic key. In such cases, an attacker can quickly check to see if a guessed password successfully decodes encrypted data. For example, one commercial product claims to test 103,000 WPA PSK passwords per second.
Individual desktop computers can test over a hundred million passwords per second using password cracking tools that run on a general purpose CPU and billions of passwords per second using GPU-based password cracking tools. See: John the Ripper benchmarks. A user-selected eight-character password with numbers, mixed case, and symbols, reaches an estimated 30-bit strength, according to NIST. 230 is only one billion permutations and would take an average of 16 minutes to crack. When ordinary desktop computers are combined in a cracking effort, as can be done with botnets, the capabilities of password cracking are considerably extended. In 2002, distributed.net successfully found a 64-bit RC5 key in four years, in an effort which included over 300,000 different computers at various times, and which generated an average of over 12 billion keys per second. Graphics processors can speed up password cracking by a factor of 50 to 100 over general purpose computers. As of 2011, commercial products are available that claim the ability to test up to 2,800,000,000 passwords a second on a standard desktop computer using a high-end graphics processor. Such a device can crack a 10 letter single-case password in one day. Note that the work can be distributed over many computers for an additional speedup proportional to the number of available computers with comparable GPUs.
Despite their capabilities, desktop CPUs are slower at cracking passwords than purpose-built password breaking machines. In 1998, the Electronic Frontier Foundation (EFF) built a dedicated password cracker using FPGAs, as opposed to general purpose CPUs. Their machine, Deep Crack, broke a DES 56-bit key in 56 hours, testing over 90 billion keys per second. In 2010, the Georgia Tech Research Institute developed a method of using GPGPU to crack passwords, coming up with a minimum secure password length of 12 characters.
Read more about this topic: Password Cracking
Famous quotes containing the words time, needed and/or searches:
“I swear to keep the dead upon my mind,/Disdain for all time to be overglad./Among spring flowers, under summer trees./By chilling autumn waters, in the frosts/Of supercilious winterall my days/Ill have as mentors those reproving ghosts.”
—Gwendolyn Brooks (b. 1917)
“People who are born even-tempered, placid and untroubledsecure from violent passions or temptations to evilthose who have never needed to struggle all night with the Angel to emerge lame but victorious at dawn, never become great saints.”
—Eva Le Gallienne (b. 1899)
“When a person doesnt understand something, he feels internal discord: however he doesnt search for that discord in himself, as he should, but searches outside of himself. Thence a war develops with that which he doesnt understand.”
—Anton Pavlovich Chekhov (18601904)