Improper Applications of Parts-per Notation
Parts-per notation may properly be used only to express true dimensionless quantities; that is, the units of measurement must cancel in expressions like "1 mg/kg" so that the quotients are pure numbers with values less than 1. Mixed-unit quantities such as "a radon concentration of 15 pCi/L" are not dimensionless quantities and may not be expressed using any form of parts-per notation, such as "15 ppt". Other examples of measures that are not dimensionless quantities are as follows:
- Particulate matter in the air: 50 µg/m3; not 50 ppb. Also see air measurements, below.
- A stepper motor/gear system that produces a motion of 1 µm/pulse; not 1 ppm
- Mercury vapor concentration in air: 0.6 ng/L; not 0.6 ppt
Note however, that it is not uncommon to express aqueous concentrations—particularly in drinking-water reports intended for the general public—using parts-per notation (2.1 ppm, 0.8 ppb, etc.) and further, for those reports to state that the notations denote milligrams per liter or micrograms per liter. Although "2.1 mg/L" is not a dimensionless quantity, it is assumed in scientific circles that "2.1 mg/kg" (2.1 ppm) is the true measure because one liter of water has a mass of about one kilogram, The goal in all technical writing (including drinking-water reports for the general public) is to clearly communicate to the intended audience with minimal confusion. Drinking water is intuitively a volumetric quantity in the public’s mind so measures of contamination expressed on a per-liter basis are considered to be easier to grasp. Still, it is technically possible, for example, to "dissolve" more than one liter of a very hydrophilic chemical in 1 liter of water; parts-per notation would be confusing when describing its solubility in water (greater than a million parts per million), so one would simply state the volume (or mass) that will dissolve into a liter, instead.
When reporting air-borne rather than water-borne densities, a slightly different convention is used since air is approximately 1000 times less dense than water. In water, 1 µg/m3 is roughly equivalent to parts-per-trillion whereas in air, it is roughly equivalent to parts-per-billion. Note also, that in the case of air, this convention is much less accurate. Whereas one liter of water is almost exactly 1 kg, one cubic meter of air is often taken as 1.143 kg—much less accurate, but still close enough for many practical uses.
Read more about this topic: Parts-per Notation
Famous quotes containing the word improper:
“If the national security is involved, anything goes. There are no rules. There are people so lacking in roots about what is proper and what is improper that they dont know theres anything wrong in breaking into the headquarters of the opposition party.”
—Helen Gahagan Douglas (19001980)