Particle System - Typical Implementation

Typical Implementation

Typically a particle system's position and motion in 3D space are controlled by what is referred to as an emitter. The emitter acts as the source of the particles, and its location in 3D space determines where they are generated and whence they proceed. A regular 3D mesh object, such as a cube or a plane, can be used as an emitter. The emitter has attached to it a set of particle behavior parameters. These parameters can include the spawning rate (how many particles are generated per unit of time), the particles' initial velocity vector (the direction they are emitted upon creation), particle lifetime (the length of time each individual particle exists before disappearing), particle color, and many more. It is common for all or most of these parameters to be "fuzzy" — instead of a precise numeric value, the artist specifies a central value and the degree of randomness allowable on either side of the center (i.e. the average particle's lifetime might be 50 frames ±20%). When using a mesh object as an emitter, the initial velocity vector is often set to be normal to the individual face(s) of the object, making the particles appear to "spray" directly from each face.

A typical particle system's update loop (which is performed for each frame of animation) can be separated into two distinct stages, the parameter update/simulation stage and the rendering stage.

Read more about this topic:  Particle System

Famous quotes containing the word typical:

    New York is the meeting place of the peoples, the only city where you can hardly find a typical American.
    Djuna Barnes (1892–1982)