Partial Trace For Operators On Hilbert Spaces
The partial trace generalizes to operators on infinite dimensional Hilbert spaces. Suppose V, W are Hilbert spaces, and let
be an orthonormal basis for W. Now there is an isometric isomorphism
Under this decomposition, any operator can be regarded as an infinite matrix of operators on V
where .
First suppose T is a non-negative operator. In this case, all the diagonal entries of the above matrix are non-negative operators on V. If the sum
converges in the strong operator topology of L(V), it is independent of the chosen basis of W. The partial trace TrW(T) is defined to be this operator. The partial trace of a self-adjoint operator is defined if and only if the partial traces of the positive and negative parts are defined.
Read more about this topic: Partial Trace
Famous quotes containing the words partial, trace and/or spaces:
“It is characteristic of the epistemological tradition to present us with partial scenarios and then to demand whole or categorical answers as it were.”
—Avrum Stroll (b. 1921)
“And in these dark cells,
packed street after street,
souls live, hideous yet
O disfigured, defaced,
with no trace of the beauty
men once held so light.”
—Hilda Doolittle (18861961)
“Le silence éternel de ces espaces infinis meffraie. The eternal silence of these infinite spaces frightens me.”
—Blaise Pascal (16231662)