Partial Trace - Partial Trace For Operators On Hilbert Spaces

Partial Trace For Operators On Hilbert Spaces

The partial trace generalizes to operators on infinite dimensional Hilbert spaces. Suppose V, W are Hilbert spaces, and let

be an orthonormal basis for W. Now there is an isometric isomorphism

Under this decomposition, any operator can be regarded as an infinite matrix of operators on V

 \begin{bmatrix} T_{11} & T_{12} & \ldots & T_{1 j} & \ldots \\ T_{21} & T_{22} & \ldots & T_{2 j} & \ldots \\ \vdots & \vdots & & \vdots \\ T_{k1}& T_{k2} & \ldots & T_{k j} & \ldots \\ \vdots & \vdots & & \vdots
\end{bmatrix},

where .

First suppose T is a non-negative operator. In this case, all the diagonal entries of the above matrix are non-negative operators on V. If the sum

converges in the strong operator topology of L(V), it is independent of the chosen basis of W. The partial trace TrW(T) is defined to be this operator. The partial trace of a self-adjoint operator is defined if and only if the partial traces of the positive and negative parts are defined.

Read more about this topic:  Partial Trace

Famous quotes containing the words partial, trace and/or spaces:

    The one-eyed man will be King in the country of the blind only if he arrives there in full possession of his partial faculties—that is, providing he is perfectly aware of the precise nature of sight and does not confuse it with second sight ... nor with madness.
    Angela Carter (1940–1992)

    No trace of slavery ought to mix with the studies of the freeborn man.... No study, pursued under compulsion, remains rooted in the memory.
    Plato (c. 427–347 B.C.)

    Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,—far as they were distant from us, so were they from one another,—nay, some were twice as far from each other as from us,—impressed us with a sense of the immensity of the ocean, the “unfruitful ocean,” as it has been called, and we could see what proportion man and his works bear to the globe.
    Henry David Thoreau (1817–1862)