Partial Trace and Invariant Integration
In the case of finite dimensional Hilbert spaces, there is a useful way of looking at partial trace involving integration with respect to a suitably normalized Haar measure μ over the unitary group U(W) of W. Suitably normalized means that μ is taken to be a measure with total mass dim(W).
Theorem. Suppose V, W are finite dimensional Hilbert spaces. Then
commutes with all operators of the form and hence is uniquely of the form . The operator R is the partial trace of T.
Read more about this topic: Partial Trace
Famous quotes containing the words partial, trace and/or integration:
“It is characteristic of the epistemological tradition to present us with partial scenarios and then to demand whole or categorical answers as it were.”
—Avrum Stroll (b. 1921)
“A horse, a buggy and several sets of harness, valued in all at about $250, were stolen last night from the stable of Howard Quinlan, near Kingsville. The county police are at work on the case, but so far no trace of either thieves or booty has been found.”
—H.L. (Henry Lewis)
“Look back, to slavery, to suffrage, to integration and one thing is clear. Fashions in bigotry come and go. The right thing lasts.”
—Anna Quindlen (b. 1952)