Partial Pressure - Dalton's Law of Partial Pressures

Dalton's Law of Partial Pressures

The partial pressure of an ideal gas in a mixture is equal to the pressure it would exert if it occupied the same volume alone at the same temperature. This is because ideal gas molecules are so far apart that they don't interfere with each other at all. Actual real-world gases come very close to this ideal.

A consequence of this is that the total pressure of a mixture of ideal gases is equal to the sum of the partial pressures of the individual gases in the mixture as stated by Dalton's law. For example, given an ideal gas mixture of nitrogen (N2), hydrogen (H2) and ammonia (NH3):

where:
= total pressure of the gas mixture
= partial pressure of nitrogen (N2)
= partial pressure of hydrogen (H2)
= partial pressure of ammonia (NH3)

Read more about this topic:  Partial Pressure

Famous quotes containing the words law, partial and/or pressures:

    We accept and welcome ... as conditions to which we must accommodate ourselves, great inequality of environment; the concentration of business, industrial and commercial, in the hands of a few; and the law of competition between these, as being not only beneficial, but essential for the future progress of the race.
    Andrew Carnegie (1835–1919)

    Both the man of science and the man of art live always at the edge of mystery, surrounded by it. Both, as a measure of their creation, have always had to do with the harmonization of what is new with what is familiar, with the balance between novelty and synthesis, with the struggle to make partial order in total chaos.... This cannot be an easy life.
    J. Robert Oppenheimer (1904–1967)

    In today’s world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.
    Urie Bronfenbrenner (b. 1917)