Partial Function

In mathematics, a partial function from X to Y is a function ƒ: X' → Y, where X' is a subset of X. It generalizes the concept of a function by not forcing f to map every element of X to an element of Y (only some subset X' of X). If X' = X, then ƒ is called a total function and is equivalent to a function. Partial functions are often used when the exact domain, X', is not known (e.g. many functions in computability theory).

Specifically, we will say that for any xX, either:

  • ƒ(x) = yY (it is defined as a single element in Y) or
  • ƒ(x) is undefined.

For example we can consider the square root function restricted to the integers

Thus g(n) is only defined for n that are perfect squares (i.e. 0, 1, 4, 9, 16, ...). So, g(25) = 5, but g(26) is undefined.

Read more about Partial Function:  Domain of A Partial Function, Total Function, Discussion and Examples

Famous quotes containing the words partial and/or function:

    You must not be partial in judging: hear out the small and the great alike; you shall not be intimidated by anyone, for the judgment is God’s.
    Bible: Hebrew, Deuteronomy 1:17.

    ... the function of art is to do more than tell it like it is—it’s to imagine what is possible.
    bell hooks (b. c. 1955)