Partial Fraction - Application To Symbolic Integration

Application To Symbolic Integration

For the purpose of symbolic integration, the preceding result may be refined into

Let ƒ and g be nonzero polynomials over a field K. Write g as a product of powers of pairwise coprime polynomials which have no multiple root in an algebraically closed field:

There are (unique) polynomials b and c ij with deg c ij < deg p i such that
\frac{f}{g}=b+\sum_{i=1}^k\sum_{j=2}^{n_i}\left(\frac{c_{ij}}{p_i^{j-1}}\right)' +
\sum_{i=1}^k \frac{c_{i1}}{p_i}.
where denotes the derivative of

This reduces the computation of the antiderivative of a rational function to the integration of the last sum, with is called the logarithmic part, because its antiderivative is a linear combination of logarithms.

Read more about this topic:  Partial Fraction

Famous quotes containing the words application to, application, symbolic and/or integration:

    “Five o’clock tea” is a phrase our “rude forefathers,” even of the last generation, would scarcely have understood, so completely is it a thing of to-day; and yet, so rapid is the March of the Mind, it has already risen into a national institution, and rivals, in its universal application to all ranks and ages, and as a specific for “all the ills that flesh is heir to,” the glorious Magna Charta.
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)

    The act of bellringing is symbolic of all proselytizing religions. It implies the pointless interference with the quiet of other people.
    Ezra Pound (1885–1972)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)