Parametric Statistics - Example

Example

Suppose we have a sample of 99 test scores with a mean of 100 and a standard deviation of 1. If we assume all 99 test scores are random samples from a normal distribution we predict there is a 1% chance that the 100th test score will be higher than 102.365 (that is the mean plus 2.365 standard deviations) assuming that the 100th test score comes from the same distribution as the others. The normal family of distributions all have the same shape and are parameterized by mean and standard deviation. That means if you know the mean and standard deviation, and that the distribution is normal, you know the probability of any future observation. Parametric statistical methods are used to compute the 2.365 value above, given 99 independent observations from the same normal distribution.

A non-parametric estimate of the same thing is the maximum of the first 99 scores. We don't need to assume anything about the distribution of test scores to reason that before we gave the test it was equally likely that the highest score would be any of the first 100. Thus there is a 1% chance that the 100th is higher than any of the 99 that preceded it.

Read more about this topic:  Parametric Statistics

Famous quotes containing the word example:

    Our intellect is not the most subtle, the most powerful, the most appropriate, instrument for revealing the truth. It is life that, little by little, example by example, permits us to see that what is most important to our heart, or to our mind, is learned not by reasoning but through other agencies. Then it is that the intellect, observing their superiority, abdicates its control to them upon reasoned grounds and agrees to become their collaborator and lackey.
    Marcel Proust (1871–1922)