Results About Difficulty of Proof
Although the P = NP? problem itself remains open, despite a million-dollar prize and a huge amount of dedicated research, efforts to solve the problem have led to several new techniques. In particular, some of the most fruitful research related to the P = NP problem has been in showing that existing proof techniques are not powerful enough to answer the question, thus suggesting that novel technical approaches are required.
As additional evidence for the difficulty of the problem, essentially all known proof techniques in computational complexity theory fall into one of the following classifications, each of which is known to be insufficient to prove that P ≠ NP:
| Classification | Definition |
|---|---|
| Relativizing proofs | Imagine a world where every algorithm is allowed to make queries to some fixed subroutine called an oracle, and the running time of the oracle is not counted against the running time of the algorithm. Most proofs (especially classical ones) apply uniformly in a world with oracles regardless of what the oracle does. These proofs are called relativizing. In 1975, Baker, Gill, and Solovay showed that P = NP with respect to some oracles, while P ≠ NP for other oracles. Since relativizing proofs can only prove statements that are uniformly true with respect to all possible oracles, this showed that relativizing techniques cannot resolve P = NP. |
| Natural proofs | In 1993, Alexander Razborov and Steven Rudich defined a general class of proof techniques for circuit complexity lower bounds, called natural proofs. At the time all previously known circuit lower bounds were natural, and circuit complexity was considered a very promising approach for resolving P = NP. However, Razborov and Rudich showed that, if one-way functions exist, then no natural proof method can distinguish between P and NP. Although one-way functions have never been formally proven to exist, most mathematicians believe that they do, and a proof or disproof of their existence would be a much stronger statement than the quantification of P relative to NP. Thus it is unlikely that natural proofs alone can resolve P = NP. |
| Algebrizing proofs | After the Baker-Gill-Solovay result, new non-relativizing proof techniques were successfully used to prove that IP = PSPACE. However, in 2008, Scott Aaronson and Avi Wigderson showed that the main technical tool used in the IP = PSPACE proof, known as arithmetization, was also insufficient to resolve P = NP. |
These barriers are another reason why NP-complete problems are useful: if a polynomial-time algorithm can be demonstrated for an NP-complete problem, this would solve the P = NP problem in a way not excluded by the above results.
These barriers have also led some computer scientists to suggest that the P versus NP problem may be independent of standard axiom systems like ZFC (cannot be proved or disproved within them). The interpretation of an independence result could be that either no polynomial-time algorithm exists for any NP-complete problem, and such a proof cannot be constructed in (e.g.) ZFC, or that polynomial-time algorithms for NP-complete problems may exist, but it's impossible to prove in ZFC that such algorithms are correct. However, if it can be shown, using techniques of the sort that are currently known to be applicable, that the problem cannot be decided even with much weaker assumptions extending the Peano axioms (PA) for integer arithmetic, then there would necessarily exist nearly-polynomial-time algorithms for every problem in NP. Therefore, if one believes (as most complexity theorists do) that not all problems in NP have efficient algorithms, it would follow that proofs of independence using those techniques cannot be possible. Additionally, this result implies that proving independence from PA or ZFC using currently known techniques is no easier than proving the existence of efficient algorithms for all problems in NP.
Read more about this topic: P Versus NP Problem
Famous quotes containing the words results, difficulty and/or proof:
“Social improvement is attained more readily by a concern with the quality of results than with the purity of motives.”
—Eric Hoffer (19021983)
“Men were only made into men with great difficulty even in primitive society: the male is not naturally a man any more than the woman. He has to be propped up into that position with some ingenuity, and is always likely to collapse.”
—Wyndham Lewis (18821957)
“Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?”
—Henry David Thoreau (18171862)