Outline Of Discrete Mathematics
The following outline is presented as an overview of and topical guide to discrete mathematics:
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis.
Included below are many of the standard terms used routinely in university-level courses and in research papers. This is not, however, intended as a complete list of mathematical terms; just a selection of typical terms of art that may be encountered.
Read more about Outline Of Discrete Mathematics: Subjects in Discrete Mathematics, Discrete Mathematical Disciplines, Discrete Mathematicians
Famous quotes containing the words outline of, outline, discrete and/or mathematics:
“It is the business of thought to define things, to find the boundaries; thought, indeed, is a ceaseless process of definition. It is the business of Art to give things shape. Anyone who takes no delight in the firm outline of an object, or in its essential character, has no artistic sense.... He cannot even be nourished by Art. Like Ephraim, he feeds upon the East wind, which has no boundaries.”
—Vance Palmer (18851959)
“One by one objects are defined
It quickens: clarity, outline of leaf
But now the stark dignity of
entranceStill, the profound change
has come upon them: rooted, they
grip down and begin to awaken”
—William Carlos Williams (18831963)
“The mastery of ones phonemes may be compared to the violinists mastery of fingering. The violin string lends itself to a continuous gradation of tones, but the musician learns the discrete intervals at which to stop the string in order to play the conventional notes. We sound our phonemes like poor violinists, approximating each time to a fancied norm, and we receive our neighbors renderings indulgently, mentally rectifying the more glaring inaccuracies.”
—W.V. Quine (b. 1908)
“The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.”
—Willard Van Orman Quine (b. 1908)