Definition (abstract)
Let V and W be two vector spaces, and let W* be the dual space of W. Given a vector x ∈ V and y* ∈ W*, then the tensor product y* ⊗ x corresponds to the map A : W → V given by
Here y*(w) denotes the value of the linear functional y* (which is an element of the dual space of W) when evaluated at the element w ∈ W. This scalar in turn is multiplied by x to give as the final result an element of the space V.
If V and W are finite-dimensional, then the space of all linear transformations from W to V, denoted Hom(W, V), is generated by such outer products; in fact, the rank of a matrix is the minimal number of such outer products needed to express it as a sum (this is the tensor rank of a matrix). In this case Hom(W, V) is isomorphic to W* ⊗ V.
Read more about this topic: Outer Product
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)