Definition For 1-variable Case For A Real Measure
Given any non-decreasing function α on the real numbers, we can define the Lebesgue–Stieltjes integral
of a function f. If this integral is finite for all polynomials f, we can define an inner product on pairs of polynomials f and g by
This operation is a positive semidefinite inner product on the vector space of all polynomials, and is positive definite if the function α has an infinite number of points of growth. It induces a notion of orthogonality in the usual way, namely that two polynomials are orthogonal if their inner product is zero.
Then the sequence (Pn)n=0∞ of orthogonal polynomials is defined by the relations
In other words, obtained from the sequence of monomials 1, x, x2, ... by the Gram–Schmidt process.
Usually the sequence is required to be orthonormal, namely,
however, other normalisations are sometimes used.
Read more about this topic: Orthogonal Polynomials
Famous quotes containing the words definition, case, real and/or measure:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“God ... created a number of possibilities in case some of his prototypes failedthat is the meaning of evolution.”
—Graham Greene (19041991)
“No; we have been as usual asking the wrong question. It does not matter a hoot what the mockingbird on the chimney is singing.... The real and proper question is: Why is it beautiful?”
—Annie Dillard (b. 1945)
“Perpetual modernness is the measure of merit in every work of art.”
—Ralph Waldo Emerson (18031882)