Definition For 1-variable Case For A Real Measure
Given any non-decreasing function α on the real numbers, we can define the Lebesgue–Stieltjes integral
of a function f. If this integral is finite for all polynomials f, we can define an inner product on pairs of polynomials f and g by
This operation is a positive semidefinite inner product on the vector space of all polynomials, and is positive definite if the function α has an infinite number of points of growth. It induces a notion of orthogonality in the usual way, namely that two polynomials are orthogonal if their inner product is zero.
Then the sequence (Pn)n=0∞ of orthogonal polynomials is defined by the relations
In other words, obtained from the sequence of monomials 1, x, x2, ... by the Gram–Schmidt process.
Usually the sequence is required to be orthonormal, namely,
however, other normalisations are sometimes used.
Read more about this topic: Orthogonal Polynomials
Famous quotes containing the words definition, case, real and/or measure:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“Wealth is not without its advantages and the case to the contrary, although it has often been made, has never proved widely persuasive.”
—John Kenneth Galbraith (b. 1908)
“The real weakness of England lies, not in incomplete armaments or unfortified coasts, not in the poverty that creeps through sunless lanes, or the drunkenness that brawls in loathsome courts, but simply in the fact that her ideals are emotional and not intellectual.”
—Oscar Wilde (18541900)
“I thought of rhyme alone,
For rhyme can beat a measure out of trouble
And make the daylight sweet once more....”
—William Butler Yeats (18651939)