General Bilinear Forms
Let V be a vector space over a field F equipped with a bilinear form B. We define u to be left-orthogonal to v, and v to be right-orthogonal to u, when B(u,v) = 0. For a subset W of V we define the left orthogonal complement W⊥ to be
There is a corresponding definition of right orthogonal complement. For a reflexive bilinear form, where B(u,v) = 0 implies B(v,u) = 0 for all u and v in V, the left and right complements coincide. This will be the case if B is a symmetric or skew-symmetric bilinear form.
The definition extends to a bilinear form on a free module over a commutative ring, and to a sesquilinear form extended to include any free module over a commutative ring with conjugation.
Read more about this topic: Orthogonal Complement
Famous quotes containing the words general and/or forms:
“As a general rule, do not kick the shins of the opposite gentleman under the table, if personally unaquainted with him; your pleasantry is liable to be misunderstooda circumstance at all times unpleasant.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Our character is not so much the product of race and heredity as of those circumstances by which nature forms our habits, by which we are nurtured and live.”
—Marcus Tullius Cicero (10643 B.C.)