Orthogonal Complement - General Bilinear Forms

General Bilinear Forms

Let V be a vector space over a field F equipped with a bilinear form B. We define u to be left-orthogonal to v, and v to be right-orthogonal to u, when B(u,v) = 0. For a subset W of V we define the left orthogonal complement W⊥ to be

There is a corresponding definition of right orthogonal complement. For a reflexive bilinear form, where B(u,v) = 0 implies B(v,u) = 0 for all u and v in V, the left and right complements coincide. This will be the case if B is a symmetric or skew-symmetric bilinear form.

The definition extends to a bilinear form on a free module over a commutative ring, and to a sesquilinear form extended to include any free module over a commutative ring with conjugation.

Read more about this topic:  Orthogonal Complement

Famous quotes containing the words general and/or forms:

    Through the particular, in wartime, I felt the high-voltage current of the general pass.
    Elizabeth Bowen (1899–1973)

    Anyone who seeks for the true causes of miracles, and strives to understand natural phenomena as an intelligent being, and not to gaze at them like a fool, is set down and denounced as an impious heretic by those, whom the masses adore as the interpreters of nature and the gods. Such persons know that, with the removal of ignorance, the wonder which forms their only available means for proving and preserving their authority would vanish also.
    Baruch (Benedict)