Orthogonal Complement - General Bilinear Forms

General Bilinear Forms

Let V be a vector space over a field F equipped with a bilinear form B. We define u to be left-orthogonal to v, and v to be right-orthogonal to u, when B(u,v) = 0. For a subset W of V we define the left orthogonal complement W⊥ to be

There is a corresponding definition of right orthogonal complement. For a reflexive bilinear form, where B(u,v) = 0 implies B(v,u) = 0 for all u and v in V, the left and right complements coincide. This will be the case if B is a symmetric or skew-symmetric bilinear form.

The definition extends to a bilinear form on a free module over a commutative ring, and to a sesquilinear form extended to include any free module over a commutative ring with conjugation.

Read more about this topic:  Orthogonal Complement

Famous quotes containing the words general and/or forms:

    Hence that general is skilful in attack whose opponent does not know what to defend; and he is skilful in defense whose opponent does not know what to attack.
    Sun Tzu (6th–5th century B.C.)

    The call of death is a call of love. Death can be sweet if we answer it in the affirmative, if we accept it as one of the great eternal forms of life and transformation.
    Hermann Hesse (1877–1962)