Ordinal Arithmetic - Natural Operations

Natural Operations

The natural sum and natural product operations on ordinals were defined in 1906 by Gerhard Hessenberg, and are sometimes called the Hessenberg sum (or product). They are also sometimes called the Conway operations, as they are just the addition and multiplication (restricted to ordinals) of Conway's field of surreal numbers. They have the advantage that they are associative and commutative, and natural product distributes over natural sum. The cost of making these operations commutative is that they lose the continuity in the right argument which is a property of the ordinary sum and product. The natural sum of α and β is sometimes denoted by α # β, and the natural product by a sort of doubled × sign: α ⨳ β. To define the natural sum of two ordinals, consider once again the disjoint union of two well-ordered sets having these order types. Start by putting a partial order on this disjoint union by taking the orders on S and T separately but imposing no relation between S and T. Now consider the order types of all well-orders on which extend this partial order: the least upper bound of all these ordinals (which is, actually, not merely a least upper bound but actually a greatest element) is the natural sum. Alternatively, we can define the natural sum of α and β inductively (by simultaneous induction on α and β) as the smallest ordinal greater than the natural sum of α and γ for all γ < β and of γ and β for all γ < α.

The natural sum is associative and commutative: it is always greater or equal to the usual sum, but it may be greater. For example, the natural sum of ω and 1 is ω+1 (the usual sum), but this is also the natural sum of 1 and ω.

To define the natural product of two ordinals, consider once again the cartesian product S × T of two well-ordered sets having these order types. Start by putting a partial order on this cartesian product by using just the product order (compare two pairs if and only if each of the two coordinates is comparable). Now consider the order types of all well-orders on S × T which extend this partial order: the least upper bound of all these ordinals (which is, actually, not merely a least upper bound but actually a greatest element) is the natural product. There is also an inductive definition of the natural product (by mutual induction), but it is somewhat tedious to write down and we will not do so (see the article on surreal numbers for the definition in that context, which, however, uses Conway subtraction, something which obviously cannot be defined on ordinals).

The natural product is associative and commutative and distributes over the natural sum: it is always greater or equal to the usual product, but it may be greater. For example, the natural product of ω and 2 is ω·2 (the usual product), but this is also the natural product of 2 and ω.

Yet another way to define the natural sum and product of two ordinals α and β is to use the Cantor normal form: one can find a sequence of ordinals γ1 > … > γn and two sequences (k1, …, kn) and (j1, …, jn) of natural numbers (including zero, but satisfying ki + ji > 0 for all i) such that

and defines

Read more about this topic:  Ordinal Arithmetic

Famous quotes containing the words natural and/or operations:

    Being natural is one of the most irritating poses I know in people.
    Alexander Theroux (b. 1940)

    A sociosphere of contact, control, persuasion and dissuasion, of exhibitions of inhibitions in massive or homeopathic doses...: this is obscenity. All structures turned inside out and exhibited, all operations rendered visible. In America this goes all the way from the bewildering network of aerial telephone and electric wires ... to the concrete multiplication of all the bodily functions in the home, the litany of ingredients on the tiniest can of food, the exhibition of income or IQ.
    Jean Baudrillard (b. 1929)