In Relation To Homomorphisms
Group homomorphisms tend to reduce the orders of elements: if f: G → H is a homomorphism, and a is an element of G of finite order, then ord(f(a)) divides ord(a). If f is injective, then ord(f(a)) = ord(a). This can often be used to prove that there are no (injective) homomorphisms between two concretely given groups. (For example, there can be no nontrivial homomorphism h: S3 → Z5, because every number except zero in Z5 has order 5, which does not divide the orders 1, 2, and 3 of elements in S3.) A further consequence is that conjugate elements have the same order.
Read more about this topic: Order (group Theory)
Famous quotes containing the word relation:
“There is a certain standard of grace and beauty which consists in a certain relation between our nature, such as it is, weak or strong, and the thing which pleases us. Whatever is formed according to this standard pleases us, be it house, song, discourse, verse, prose, woman, birds, rivers, trees, room, dress, and so on. Whatever is not made according to this standard displeases those who have good taste.”
—Blaise Pascal (16231662)