Counting By Order of Elements
Suppose G is a finite group of order n, and d is a divisor of n. The number of elements in G of order d is a multiple of φ(d), where φ is Euler's totient function, giving the number of positive integers no larger than d and coprime to it. For example in the case of S3, φ(3) = 2, and we have exactly two elements of order 3. The theorem provides no useful information about elements of order 2, because φ(2) = 1, and is only of limited utility for composite d such as d=6, since φ(6)=2, and there are zero elements of order 6 in S3.
Read more about this topic: Order (group Theory)
Famous quotes containing the words counting, order and/or elements:
“Love is sinister,
is mean to us in separation;
makes our thin bodies thinner.
This fellow Death
lacks mercy
and is good at counting our days.
And Master,
you, too, are subject
to the plague of jealousy
so think:
how could womenfolk,
soft as sprouts,
live like this?”
—Amaru (c. seventh century A.D.)
“An example is often a deceptive mirror, and the order of destiny, so troubling to our thoughts, is not always found written in things past.”
—Pierre Corneille (16061684)
“An illustrious individual remarks that Mrs. [Elizabeth Cady] Stanton is the salt, Anna Dickinson the pepper, and Miss [Susan B.] Anthony the vinegar of the Female Suffrage movement. The very elements get the white male into a nice pickle.”
—Anonymous, U.S. womens magazine contributor. The Revolution (August 19, 1869)