Counting By Order of Elements
Suppose G is a finite group of order n, and d is a divisor of n. The number of elements in G of order d is a multiple of φ(d), where φ is Euler's totient function, giving the number of positive integers no larger than d and coprime to it. For example in the case of S3, φ(3) = 2, and we have exactly two elements of order 3. The theorem provides no useful information about elements of order 2, because φ(2) = 1, and is only of limited utility for composite d such as d=6, since φ(6)=2, and there are zero elements of order 6 in S3.
Read more about this topic: Order (group Theory)
Famous quotes containing the words counting, order and/or elements:
“But counting up to two
Is harder to do....”
—Philip Larkin (19221986)
“Our art is the finest, the noblest, the most suggestive, for it is the synthesis of all the arts. Sculpture, painting, literature, elocution, architecture, and music are its natural tools. But while it needs all of those artistic manifestations in order to be its whole self, it asks of its priest or priestess one indispensable virtue: faith.”
—Sarah Bernhardt (18451923)
“English general and singular terms, identity, quantification, and the whole bag of ontological tricks may be correlated with elements of the native language in any of various mutually incompatible ways, each compatible with all possible linguistic data, and none preferable to another save as favored by a rationalization of the native language that is simple and natural to us.”
—Willard Van Orman Quine (b. 1908)