Counting By Order of Elements
Suppose G is a finite group of order n, and d is a divisor of n. The number of elements in G of order d is a multiple of φ(d), where φ is Euler's totient function, giving the number of positive integers no larger than d and coprime to it. For example in the case of S3, φ(3) = 2, and we have exactly two elements of order 3. The theorem provides no useful information about elements of order 2, because φ(2) = 1, and is only of limited utility for composite d such as d=6, since φ(6)=2, and there are zero elements of order 6 in S3.
Read more about this topic: Order (group Theory)
Famous quotes containing the words counting, order and/or elements:
“Love is sinister,
is mean to us in separation;
makes our thin bodies thinner.
This fellow Death
lacks mercy
and is good at counting our days.
And Master,
you, too, are subject
to the plague of jealousy
so think:
how could womenfolk,
soft as sprouts,
live like this?”
—Amaru (c. seventh century A.D.)
“Judicial judgment must take deep account ... of the day before yesterday in order that yesterday may not paralyze today.”
—Felix Frankfurter (18821965)
“Barbarisation may be defined as a cultural process whereby an attained condition of high value is gradually overrun and superseded by elements of lower quality.”
—Johan Huizinga (18721945)