Order (group Theory) - Counting By Order of Elements

Counting By Order of Elements

Suppose G is a finite group of order n, and d is a divisor of n. The number of elements in G of order d is a multiple of φ(d), where φ is Euler's totient function, giving the number of positive integers no larger than d and coprime to it. For example in the case of S3, φ(3) = 2, and we have exactly two elements of order 3. The theorem provides no useful information about elements of order 2, because φ(2) = 1, and is only of limited utility for composite d such as d=6, since φ(6)=2, and there are zero elements of order 6 in S3.

Read more about this topic:  Order (group Theory)

Famous quotes containing the words counting, order and/or elements:

    If you’re counting my eyebrows, I can help you. There are two.
    Billy Wilder (b. 1906)

    The mastery of one’s phonemes may be compared to the violinist’s mastery of fingering. The violin string lends itself to a continuous gradation of tones, but the musician learns the discrete intervals at which to stop the string in order to play the conventional notes. We sound our phonemes like poor violinists, approximating each time to a fancied norm, and we receive our neighbor’s renderings indulgently, mentally rectifying the more glaring inaccuracies.
    W.V. Quine (b. 1908)

    But all subsists by elemental strife;
    And Passions are the elements of Life.
    Alexander Pope (1688–1744)