In statistical physics, a system is said to present quenched disorder when some parameters defining its behaviour are random variables which do not evolve with time, i.e.: they are quenched or frozen. Spin glasses are a typical example. It is opposite to annealed disorder, where the random variables are allowed to evolve themselves.
In mathematical terms, quenched disorder is harder to analyze than its annealed counterpart, since the thermal and the noise averaging play very different roles. In fact, the problem is so hard that few techniques to approach each are known, most of them relying on approximations. The most used are the Replica Theory, a technique based on a mathematical analytical continuation known as the replica trick and the Cavity method which, although giving results in accord with experimentation in a large range of problems, is not generally proven to be a rigorous mathematical procedure.
More recently it has been shown by rigorous methods, however, that at least in the archetypal spin-glass model (the so-called Sherrington-Kirkpatrick model) the replica based solution is indeed exact; this area is still subject of research. The second most used technique in this field is generating functional analysis. This method is based on path integrals, and is in principle fully exact, although generally more difficult to apply than the replica procedure.
Read more about this topic: Order And Disorder (physics)
Famous quotes containing the words quenched and/or disorder:
“My aspens dear, whose airy cages quelled,
Quelled or quenched in leaves the leaping sun,
All felled, felled, are all felled;
Of a fresh and following folded rank
Not spared, not one
That dandled a sandalled
Shadow that swam or sank
On meadow and river and wind-wandering weed-winding bank.”
—Gerard Manley Hopkins (18441889)
“War begets quiet, quiet idleness, idleness disorder, disorder ruin; likewise ruin order, order virtue, virtue glory, and good fortune.”
—Sir Walter Raleigh (15521618)