Orbital Resonance - Types of Resonance

Types of Resonance

In general, an orbital resonance may

  • involve one or any combination of the orbit parameters (e.g. eccentricity versus semimajor axis, or eccentricity versus orbital inclination).
  • act on any time scale from short term, commensurable with the orbit periods, to secular, measured in 104 to 106 years.
  • lead to either long term stabilization of the orbits or be the cause of their destabilization.

A mean motion orbital resonance occurs when two bodies have periods of revolution that are a simple integer ratio of each other. Depending on the details, this can either stabilize or destabilize the orbit. Stabilization occurs when the two bodies move in such a synchronised fashion that they never closely approach. For instance:

  • The orbits of Pluto and the plutinos are stable, despite crossing that of the much larger Neptune, because they are in a 2:3 resonance with it. The resonance ensures that, when they approach perihelion and Neptune's orbit, Neptune is consistently distant (averaging a quarter of its orbit away). Other (much more numerous) Neptune-crossing bodies that were not in resonance were ejected from that region by strong perturbations due to Neptune. There are also smaller but significant groups of resonant trans-Neptunian objects occupying the 1:1 (Neptune trojans), 3:5, 4:7, 1:2 (twotinos) and 2:5 resonances, among others, with respect to Neptune.
  • In the asteroid belt beyond 3.5 AU from the Sun, the 3:2, 4:3 and 1:1 resonances with Jupiter are populated by clumps of asteroids (the Hilda family, 279 Thule, and the Trojan asteroids, respectively).

Orbital resonances can also destabilize one of the orbits. For small bodies, destabilization is actually far more likely. For instance:

  • In the asteroid belt within 3.5 AU from the Sun, the major mean-motion resonances with Jupiter are locations of gaps in the asteroid distribution, the Kirkwood gaps (most notably at the 3:1, 5:2, 7:3 and 2:1 resonances). Asteroids have been ejected from these almost empty lanes by repeated perturbations. However, there are still populations of asteroids temporarily present in or near these resonances. For example, asteroids of the Alinda family are in or close to the 3:1 resonance, with their orbital eccentricity steadily increased by interactions with Jupiter until they eventually have a close encounter with an inner planet that ejects them from the resonance.
  • In the rings of Saturn, the Cassini Division is a gap between the inner B Ring and the outer A Ring that has been cleared by a 2:1 resonance with the moon Mimas. (More specifically, the site of the resonance is the Huygens Gap, which bounds the outer edge of the B Ring.)
  • In the rings of Saturn, the Encke and Keeler gaps within the A Ring are cleared by 1:1 resonances with the embedded moonlets Pan and Daphnis, respectively. The A Ring's outer edge is maintained by a destabilizing 7:6 resonance with the moon Janus.

A Laplace resonance occurs when three or more orbiting bodies have a simple integer ratio between their orbital periods. For example, Jupiter's moons Ganymede, Europa and Io are in a 1:2:4 orbital resonance. The extrasolar planets Gliese 876 e, b and c are also in a 1:2:4 orbital resonance.

A Lindblad resonance drives spiral density waves both in galaxies (where stars are subject to forcing by the spiral arms themselves) and in Saturn's rings (where ring particles are subject to forcing by Saturn's moons).

A secular resonance occurs when the precession of two orbits is synchronised (usually a precession of the perihelion or ascending node). A small body in secular resonance with a much larger one (e.g. a planet) will precess at the same rate as the large body. Over long times (a million years, or so) a secular resonance will change the eccentricity and inclination of the small body.

Several prominent examples of secular resonance involve Saturn. A resonance between the precession of Saturn's rotational axis and that of Neptune's orbital axis (both of which have periods of about 1.87 million years) has been identified as the likely source of Saturn's large axial tilt (26.7°). Initially, Saturn probably had a tilt closer to that of Jupiter (3.1°). The gradual depletion of the Kuiper belt would have decreased the precession rate of Neptune's orbit; eventually, the frequencies matched, and Saturn's axial precession was captured into the spin-orbit resonance, leading to an increase in Saturn's obliquity. (The angular momentum of Neptune's orbit is 104 times that of Saturn's spin, and thus dominates the interaction.)

The perihelion secular resonance between asteroids and Saturn (ν6 = g -g6) helps shape the asteroid belt. Asteroids which approach it have their eccentricity slowly increased until they become Mars-crossers, at which point they are usually ejected from the asteroid belt by a close pass to Mars. This resonance forms the inner and "side" boundaries of the asteroid belt around 2 AU, and at inclinations of about 20°.

Numerical simulations have suggested that the eventual formation of a perihelion secular resonance between Mercury and Jupiter (g1=g5) has the potential to greatly increase Mercury's eccentricity and possibly destabilize the inner Solar System several billion years from now.

The Titan Ringlet within Saturn's C Ring represents another type of resonance in which the rate of apsidal precession of one orbit exactly matches the speed of revolution of another. The outer end of this eccentric ringlet always points towards Saturn's major moon Titan.

A Kozai resonance occurs when the inclination and eccentricity of a perturbed orbit oscillate synchronously (increasing eccentricity while decreasing inclination and vice versa). This resonance applies only to bodies on highly inclined orbits; as a consequence, such orbits tend to be unstable, since the growing eccentricity would result in small pericenters, typically leading to a collision or (for large moons) destruction by tidal forces.

In an example of another type of resonance involving orbital eccentricity, the eccentricities of Ganymede and Callisto vary with a common period of 181 years, although with opposite phases.

Read more about this topic:  Orbital Resonance

Famous quotes containing the words types of, types and/or resonance:

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)

    As for types like my own, obscurely motivated by the conviction that our existence was worthless if we didn’t make a turning point of it, we were assigned to the humanities, to poetry, philosophy, painting—the nursery games of humankind, which had to be left behind when the age of science began. The humanities would be called upon to choose a wallpaper for the crypt, as the end drew near.
    Saul Bellow (b. 1915)

    It is closing time in the gardens of the West and from now on an artist will be judged only by the resonance of his solitude or the quality of his despair.
    Cyril Connolly (1903–1974)