Operator Topologies - Introduction

Introduction

Let {Tn} be a sequence of linear operators on the Hilbert space H. Consider the statement that Tn converges to some operator T in H. This could have several different meanings:

  • If, that is, the operator norm of Tn - T (the supremum of, where x ranges over the unit ball in H) converges to 0, we say that in the uniform operator topology.
  • If for all x in H, then we say in the strong operator topology.
  • Finally, suppose in the weak topology of H. This means that for all linear functionals F on H. In this case we say that in the weak operator topology.

All of these notions make sense and are useful for a Banach space in place of the Hilbert space H.

Read more about this topic:  Operator Topologies

Famous quotes containing the word introduction:

    Such is oftenest the young man’s introduction to the forest, and the most original part of himself. He goes thither at first as a hunter and fisher, until at last, if he has the seeds of a better life in him, he distinguishes his proper objects, as a poet or naturalist it may be, and leaves the gun and fish-pole behind. The mass of men are still and always young in this respect.
    Henry David Thoreau (1817–1862)

    For the introduction of a new kind of music must be shunned as imperiling the whole state; since styles of music are never disturbed without affecting the most important political institutions.
    Plato (c. 427–347 B.C.)

    For better or worse, stepparenting is self-conscious parenting. You’re damned if you do, and damned if you don’t.
    —Anonymous Parent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)