Introduction
Let {Tn} be a sequence of linear operators on the Hilbert space H. Consider the statement that Tn converges to some operator T in H. This could have several different meanings:
- If, that is, the operator norm of Tn - T (the supremum of, where x ranges over the unit ball in H) converges to 0, we say that in the uniform operator topology.
- If for all x in H, then we say in the strong operator topology.
- Finally, suppose in the weak topology of H. This means that for all linear functionals F on H. In this case we say that in the weak operator topology.
All of these notions make sense and are useful for a Banach space in place of the Hilbert space H.
Read more about this topic: Operator Topologies
Famous quotes containing the word introduction:
“My objection to Liberalism is thisthat it is the introduction into the practical business of life of the highest kindnamely, politicsof philosophical ideas instead of political principles.”
—Benjamin Disraeli (18041881)
“The role of the stepmother is the most difficult of all, because you cant ever just be. Youre constantly being testedby the children, the neighbors, your husband, the relatives, old friends who knew the childrens parents in their first marriage, and by yourself.”
—Anonymous Stepparent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)
“We used chamber-pots a good deal.... My mother ... loved to repeat: When did the queen reign over China? This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.”
—Angela Carter (19401992)