Operators in Quantum Mechanics
The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator.
The wavefunction represents the probability amplitude of finding the system in that state. The terms "wavefunction" and "state" in QM context are usually used interchangeably.
Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex vector space: a Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.
Any observable, i.e., any quantity which can be measured in a physical experiment, should be associated with a self-adjoint linear operator. The operators must yield real eigenvalues, since they are values which may come up as the result of the experiment. Mathematically this means the operators must be Hermitian. The probability of each eigenvalue is related to the projection of the physical state on the subspace related to that eigenvalue. See below for mathematical details.
In the wave mechanics formulation of QM, the wavefunction varies with space and time, or equivalently momentum and time (see position and momentum space for details), so observables are differential operators.
In the matrix mechanics formulation, the norm of the physical state should stay fixed, so the evolution operator should be unitary, and the operators can be represented as matrices. Any other symmetry, mapping a physical state into another, should keep this restriction.
Read more about this topic: Operator (physics)
Famous quotes containing the words quantum and/or mechanics:
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“the moderate Aristotelian city
Of darning and the Eight-Fifteen, where Euclids geometry
And Newtons mechanics would account for our experience,
And the kitchen table exists because I scrub it.”
—W.H. (Wystan Hugh)