Introduction and Definition
Given two normed vector spaces V and W (over the same base field, either the real numbers R or the complex numbers C), a linear map A : V → W is continuous if and only if there exists a real number c such that
(the norm on the left is the one in W, the norm on the right is the one in V). Intuitively, the continuous operator A never "lengthens" any vector more than by a factor of c. Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators. In order to "measure the size" of A, it then seems natural to take the smallest number c such that the above inequality holds for all v in V. In other words, we measure the "size" of A by how much it "lengthens" vectors in the "biggest" case. So we define the operator norm of A as
(the minimum exists as the set of all such c is closed, nonempty, and bounded from below).
Read more about this topic: Operator Norm
Famous quotes containing the words introduction and/or definition:
“The role of the stepmother is the most difficult of all, because you cant ever just be. Youre constantly being testedby the children, the neighbors, your husband, the relatives, old friends who knew the childrens parents in their first marriage, and by yourself.”
—Anonymous Stepparent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)