Operad theory is a field of abstract algebra concerned with prototypical algebras that model properties such as commutativity or anticommutativity as well as various amounts of associativity. Operads generalize the various associativity properties already observed in algebras and coalgebras such as Lie algebras or Poisson algebras by modeling computational trees within the algebra. Algebras are to operads as group representations are to groups. Originating from work in algebraic topology by Boardman and Vogt, and J. Peter May (to whom their name is due), it has more recently found many applications, drawing for example on work by Maxim Kontsevich on graph homology.
An operad can be seen as a set of operations, each one having a fixed finite number of inputs (arguments) and one output, which can be composed one with others; it is a category-theoretic analog of universal algebra.
Read more about Operad Theory: Origins of The Term
Famous quotes containing the word theory:
“We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fallwhich latter, it would seem, is now near, among all people.”
—Thomas Carlyle (17951881)