Formation
The formation of an open cluster begins with the collapse of part of a giant molecular cloud, a cold dense cloud of gas and dust containing up to many thousands of times the mass of the Sun. These clouds have densities that vary from 102 to 106 molecules of neutral hydrogen per cm3, with star formation occurring in regions with densities above 104 molecules per cm3. Typically, only 1–10% of the cloud by volume is above the latter density. Prior to collapse, these clouds maintain their mechanical equilibrium through magnetic fields, turbulence, and rotation.
Many factors may disrupt the equilibrium of a giant molecular cloud, triggering a collapse and initiating the burst of star formation that can result in an open cluster. These include shock waves from a nearby supernova, collisions with other clouds, or gravitational interactions. Even without external triggers, regions of the cloud can reach conditions where they become unstable against collapse. The collapsing cloud region will undergo hierarchical fragmentation into ever smaller clumps, including a particularly dense form known as infrared dark clouds, eventually leading to the formation of up to several thousand stars. This star formation begins enshrouded in the collapsing cloud, blocking the protostars from sight but allowing infrared observation. In the Milky Way galaxy, the formation rate of open clusters is estimated to be one every few thousand years.
The hottest and most massive of the newly formed stars (known as OB stars) will emit intense ultraviolet radiation, which steadily ionizes the surrounding gas of the giant molecular cloud, forming an H II region. Stellar winds and radiation pressure from the massive stars begins to drive away the hot ionized gas at a velocity matching the speed of sound in the gas. After a few million years the cluster will experience its first core-collapse supernovae, which will also expel gas from the vicinity. In most cases these processes will strip the cluster of gas within ten million years and no further star formation will take place. Still, about half of the resulting protostellar objects will be left surrounded by circumstellar disks, many of which form accretion disks.
As only 30 to 40 per cent of the gas in the cloud core forms stars, the process of residual gas expulsion is highly damaging to the star formation process. All clusters thus suffer significant infant weight loss, while a large fraction undergo infant mortality. At this point, the formation of an open cluster will depend on whether the newly formed stars are gravitationally bound to each other; otherwise an unbound stellar association will result. Even when a cluster such as the Pleiades does form, it may only hold on to a third of the original stars, with the remainder becoming unbound once the gas is expelled. The young stars so released from their natal cluster become part of the Galactic field population.
Because most if not all stars form clustered, star clusters are to be viewed the fundamental building blocks of galaxies. The violent gas-expulsion events that shape and destroy many star clusters at birth leave their imprint in the morphological and kinematical structures of galaxies. Most open clusters form with at least 100 stars and a mass of 50 or more solar masses. The largest clusters can have 104 solar masses, with the massive cluster Westerlund 1 being estimated at 5 × 104 solar masses; close to that of a globular cluster. While open clusters and globular clusters form two fairly distinct groups, there may not be a great deal of difference in appearance between a very sparse globular cluster and a very rich open cluster. Some astronomers believe the two types of star clusters form via the same basic mechanism, with the difference being that the conditions that allowed the formation of the very rich globular clusters containing hundreds of thousands of stars no longer prevail in the Milky Way.
It is common for two or more separate open clusters to form out of the same molecular cloud. In the Large Magellanic Cloud, both Hodge 301 and R136 are forming from the gases of the Tarantula Nebula, while in our own galaxy, tracing back the motion through space of the Hyades and Praesepe, two prominent nearby open clusters, suggests that they formed in the same cloud about 600 million years ago. Sometimes, two clusters born at the same time will form a binary cluster. The best known example in the Milky Way is the Double Cluster of NGC 869 and NGC 884 (sometimes mistakenly called h and χ Persei; h refers to a neighboring star and χ to both clusters), but at least 10 more double clusters are known to exist. Many more are known in the Small and Large Magellanic Clouds—they are easier to detect in external systems than in our own galaxy because projection effects can cause unrelated clusters within the Milky Way to appear close to each other.
Read more about this topic: Open Cluster
Famous quotes containing the word formation:
“... the mass migrations now habitual in our nation are disastrous to the family and to the formation of individual character. It is impossible to create a stable society if something like a third of our people are constantly moving about. We cannot grow fine human beings, any more than we can grow fine trees, if they are constantly torn up by the roots and transplanted ...”
—Agnes E. Meyer (18871970)
“Out of my discomforts, which were small enough, grew one thing for which I have all my life been gratefulthe formation of fixed habits of work.”
—Elizabeth Stuart Phelps (18441911)
“It is because the body is a machine that education is possible. Education is the formation of habits, a superinducing of an artificial organisation upon the natural organisation of the body.”
—Thomas Henry Huxley (18251895)