Extraction
Open-pit mines are dug on benches, which describe vertical levels of the hole. These benches are usually on four meter to sixty meter intervals, depending on the size of the machinery that is being used. Many quarries do not use benches, as they are usually shallow.
Most walls of the pit are generally dug on an angle less than vertical, to prevent and minimize damage and danger from rock falls. This depends on how weathered the rocks are, and the type of rock, and also how many structural weaknesses occur within the rocks, such as a fault, shears, joints or foliations.
The walls are stepped. The inclined section of the wall is known as the batter, and the flat part of the step is known as the bench or berm. The steps in the walls help prevent rock falls continuing down the entire face of the wall. In some instances additional ground support is required and rock bolts, cable bolts and shotcrete are used. De-watering bores may be used to relieve water pressure by drilling horizontally into the wall, which is often enough to cause failures in the wall by itself.
A haul road is usually situated at the side of the pit, forming a ramp up which trucks can drive, carrying ore and waste rock.
Waste rock is piled up at the surface, near the edge of the open pit. This is known as the waste dump. The waste dump is also tiered and stepped, to minimize degradation.
Ore which has been processed is known as tailings, and is generally a slurry. This is pumped to a tailings dam or settling pond, where the water evaporates. Tailings dams can often be toxic due to the presence of unextracted sulfide minerals, some forms of toxic minerals in the gangue, and often cyanide which is used to treat gold ore via the cyanide leach process. This toxicity can harm the surrounding environment.
Read more about this topic: Open-pit Mining
Famous quotes containing the word extraction:
“Logic is the last scientific ingredient of Philosophy; its extraction leaves behind only a confusion of non-scientific, pseudo problems.”
—Rudolf Carnap (18911970)